IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v229y1996i2p147-165.html
   My bibliography  Save this article

Dynamics of a neural network model with finite connectivity and cycle stored patterns

Author

Listed:
  • Ji, Daoyun
  • Hu, Beilai
  • Chen, Tianlun

Abstract

The spatiotemporal evolution and memory retrieval properties of a Hopfield-like neural network with cycle-stored patterns and finite connectivity are studied. The analytical studies on a mean-field version show that, given the number of stored patterns p, there is a critical connectivity kc such that the retrieval states are stable fixed points if and only if k > kc. The dependence of kc on the number of stored patterns is also present. The numerical simulations are applied to the short-ranged model with local interaction. It is revealed that, given p, the memory retrieval function is kept if the connectivity is high enough while the dynamics of the system is in the frozen phase. However when the connectivity k is less than a critical value kc the system is in the chaotic phase and loses its memory retrieval ability. The critical points of both the dynamical phase transition and memory-loss phase transition are obtained by simulation data.

Suggested Citation

  • Ji, Daoyun & Hu, Beilai & Chen, Tianlun, 1996. "Dynamics of a neural network model with finite connectivity and cycle stored patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 229(2), pages 147-165.
  • Handle: RePEc:eee:phsmap:v:229:y:1996:i:2:p:147-165
    DOI: 10.1016/0378-4371(95)00468-8
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0378437195004688
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/0378-4371(95)00468-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:229:y:1996:i:2:p:147-165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.