IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v224y1996i1p348-368.html
   My bibliography  Save this article

Phase diagram of the two-dimensional complex Ginzburg-Landau equation

Author

Listed:
  • Chaté, Hugues
  • Manneville, Paul

Abstract

After a brief introduction to the complex Ginzburgh-Landau equation, some of its important features in two space dimensions are reviewed. A comprehensive study of the various phases observed numerically in large systems over the whole parameter space is then presented. The nature of the transitions between these phases is investigated and some theoretical problems linked to the phase diagram are discussed.

Suggested Citation

  • Chaté, Hugues & Manneville, Paul, 1996. "Phase diagram of the two-dimensional complex Ginzburg-Landau equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 224(1), pages 348-368.
  • Handle: RePEc:eee:phsmap:v:224:y:1996:i:1:p:348-368
    DOI: 10.1016/0378-4371(95)00361-4
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0378437195003614
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/0378-4371(95)00361-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ivars, Salim B. & Botey, Muriel & Herrero, Ramon & Staliunas, Kestutis, 2023. "Stabilisation of spatially periodic states by non-Hermitian potentials," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    2. Hingis, Y.M. Gifteena & Muthtamilselvan, M., 2024. "Ginzburg–Landau equations for the salt fingering region with the onset of microorganisms," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 222(C), pages 90-109.
    3. Montagne, Raúl & Brunnet, Leonardo Gregory, 2003. "Dynamic spectral analysis of phase turbulence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 319(C), pages 295-304.
    4. Granzow, Glen D. & Riecke, Hermann, 1998. "Ordered and disordered defect chaos," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 249(1), pages 27-35.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:224:y:1996:i:1:p:348-368. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.