IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v224y1996i1p254-266.html
   My bibliography  Save this article

Response of random dielectric composites and earthquake models to pulses: prediction possibilities

Author

Listed:
  • Acharyya, Muktish
  • Chakrabarti, Bikas K.

Abstract

Following the success of the study of response to local short-duration pulses (of magnetic field, additional ‘sands’, etc.) on magnetic systems and the BTW (sand-pile) model, to locate accurately the respective critical points, the responses to similar short duration pulses (of electric field, of ‘mechanical pushes’ on tectonic plates, etc.) have been studied here numerically for metal-insulator composites before dielectric breakdown and the Burridge-Knopoff (earthquake) model before the critical avalanches. The breakdown susceptibility (defined in the text), obtained from such response behaviour, indicates universal behavior near the catastrophic breakdown or the self-organised critical points. We show that the breakdown (electric) feld for random metal-dielectric composites can be located accurately much before the breakdown, by extrapolating the inverse breakdown susceptibility to its vanishing point. Similarly, the growth of the susceptibility, coming from the stress correlations, in the Burridge-Knopoff model of earthquakes is shown to be exponential in time. Prediction of the earthquake point (in time) is also possible in the model from the study of its inverse logarithm with straight-line extrapolation to its vanishing point.

Suggested Citation

  • Acharyya, Muktish & Chakrabarti, Bikas K., 1996. "Response of random dielectric composites and earthquake models to pulses: prediction possibilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 224(1), pages 254-266.
  • Handle: RePEc:eee:phsmap:v:224:y:1996:i:1:p:254-266
    DOI: 10.1016/0378-4371(95)00362-2
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0378437195003622
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/0378-4371(95)00362-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:224:y:1996:i:1:p:254-266. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.