IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v209y1994i3p347-360.html
   My bibliography  Save this article

Waves of topplings in an Abelian sandpile

Author

Listed:
  • Ivashkevich, E.V.
  • Ktitarev, D.V.
  • Priezzhev, V.B.

Abstract

We study the structure of the avalanche process in the 2D Abelian sandpile model. An avalanche may be represented as a sequence of waves, each consisting of sites that toppled only once in that wave. It is shown that the waves are in one-to-one correspondence with the set of two-rooted spanning trees and can be described in terms of Green functions. We argue that the probability distribution of waves of size s varies as 1/s for large s. We prove also that the avalanches started at the open boundary consist of only one wave and find the asymptotic distribution of their sizes, which varies as s−32. We establish the equivalence between waves and inverse avalanches introduced by Dhar and Manna and reproduce their result 118 for the critical exponent of the size distribution of the first inverse avalanche or, in our terms, the last wave.

Suggested Citation

  • Ivashkevich, E.V. & Ktitarev, D.V. & Priezzhev, V.B., 1994. "Waves of topplings in an Abelian sandpile," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 209(3), pages 347-360.
  • Handle: RePEc:eee:phsmap:v:209:y:1994:i:3:p:347-360
    DOI: 10.1016/0378-4371(94)90188-0
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0378437194901880
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/0378-4371(94)90188-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sokolov, Andrey & Melatos, Andrew & Kieu, Tien & Webster, Rachel, 2015. "Memory on multiple time-scales in an Abelian sandpile," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 295-301.
    2. Dhar, Deepak, 1999. "The Abelian sandpile and related models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 263(1), pages 4-25.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:209:y:1994:i:3:p:347-360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.