IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v203y1994i3p425-436.html
   My bibliography  Save this article

Thermodynamic limit in number theory: Riemann-Beurling gases

Author

Listed:
  • Julia, B.L.

Abstract

We study the grand canonical version of a solved statistical model, the Riemann gas: a collection of bosonic oscillators with energies the logarithms of the prime numbers. The introduction of a chemical potential μ amounts to multiply each prime by e-μ, the corresponding gases could be called Beurling gases because they are defined by the choice of appropriate generalized primes when considered as canonical ensembles; one finds generalized Hagedorn singularities in the temperature. The discrete spectrum can be treated as continuous in its high energy region; this approximation allows us to study the high energy level density and is applied to Beurling gases. It is expected to be accurate for the high temperature behaviour. One model (the logarithmic gases) will be studied in more detail, it corresponds to the choice of all the integers strictly larger than one as Beurling primes; we give an explicit formula for its grand canonical thermodynamic potential F - μN in terms of a hypergeometric function and check the approximation on the Hagedorn phenomenon. Related physical situations include string theories and quark deconfinement where one needs a better understanding of the nature of the Hagedorn transitions.

Suggested Citation

  • Julia, B.L., 1994. "Thermodynamic limit in number theory: Riemann-Beurling gases," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 203(3), pages 425-436.
  • Handle: RePEc:eee:phsmap:v:203:y:1994:i:3:p:425-436
    DOI: 10.1016/0378-4371(94)90008-6
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0378437194900086
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/0378-4371(94)90008-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:203:y:1994:i:3:p:425-436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.