IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v185y1992i1p195-201.html
   My bibliography  Save this article

Closed formulae for Green functions on fractal lattices

Author

Listed:
  • Schwalm, William A.
  • Schwalm, Mizuho K.

Abstract

Closed form solutions are found for Schrödinger Green functions x (corner-to-same-corner) and y (corner-to-other-corner) on the 3-simplex, the 4-simplex and two other fractal lattices. It is elementary to derive the well known recursions of the form x → X(x, y), y → Y(x, y) relating generations n and n + 1 of the lattice. We have now obtained an infinite hierarchy of exact solutions to these recursion expressing x, y as closed formulae in terms of initial condition (energy) and generation number n. This amounts to constructing a hierarchy of orbits for the dynamics of the renormalization map. To our knowledge, no other such solutions have been found previously. For each of these solutions, y scales as a power of the lattice size, which is of interest in relation to conductance scaling in Anderson localization. One cannot study power-law scaling numerically using the recursions alone, since the asymptotic behavior of y at large length scale is chaotic with respect to the energy parameter. Thus, the chances of finding any power-law solution are measure zero in the initial conditions, most of which lead to superlocalized, stretched exponential behaviors of y with lattice size. In contrast, the exact solutions each connect a value of energy to an unambiguous asymptotic behavior.

Suggested Citation

  • Schwalm, William A. & Schwalm, Mizuho K., 1992. "Closed formulae for Green functions on fractal lattices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 185(1), pages 195-201.
  • Handle: RePEc:eee:phsmap:v:185:y:1992:i:1:p:195-201
    DOI: 10.1016/0378-4371(92)90456-Z
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/037843719290456Z
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/0378-4371(92)90456-Z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mulholland, Anthony J., 2008. "Bounds on the Hausdorff dimension of a renormalisation map arising from an excitable reaction-diffusion system on a fractal lattice," Chaos, Solitons & Fractals, Elsevier, vol. 35(2), pages 274-284.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:185:y:1992:i:1:p:195-201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.