IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v184y1992i1p71-78.html
   My bibliography  Save this article

On the Ornstein—Zernike relation, the BBGKY hierarchy and closures

Author

Listed:
  • Hu, Z.M.
  • Gan, H.H.
  • Chan, Byung Eu

Abstract

We examine the Ornstein-Zernike relation for correlation functions and the Kirkwood hierarchy of integral equations for reduced distribution functions with a view toward obtaining closures. A generalized closure relation is thereby obtained which reduces to the conventional closures that give rise to the Percus-Yevick integral equation, the hypernetted chain integral equation, and the mean spherical approximation integral equation for the pair correlation function for a simple fluid, when different approximations are made to the closure obtained. An integral equation for the pair correlation function is proposed on the basis of the closure mentioned. In the sense that the aforementioned closure is inclusive of the Percus-Yevick, hypernetted chain, and mean spherical approximation integral equation, the new integral equation generalizes the conventional integral equations just mentioned.

Suggested Citation

  • Hu, Z.M. & Gan, H.H. & Chan, Byung Eu, 1992. "On the Ornstein—Zernike relation, the BBGKY hierarchy and closures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 184(1), pages 71-78.
  • Handle: RePEc:eee:phsmap:v:184:y:1992:i:1:p:71-78
    DOI: 10.1016/0378-4371(92)90158-M
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/037843719290158M
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/0378-4371(92)90158-M?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:184:y:1992:i:1:p:71-78. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.