IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v173y1991i1p125-140.html
   My bibliography  Save this article

The growth of small droplets from a gas mixture; Results and estimates for very small radii

Author

Listed:
  • Widder, M.E.
  • Titulaer, U.M.

Abstract

To test and to complement the moment method for solving kinetic equations in the space outside of a sphere that absorbs one component out of a gas mixture, we develop a solution method especially suitable for radii smaller or not much larger than a mean free path. The method is used to calculate the stationary current towards an absorbing sphere suspended in a gas mixture that is in equilibrium far from the sphere. For the simplest kinetic equation, a variant of the linear BGK-equation, and for radii below two mean free paths, this procedure gives the current towards the sphere to within an accuracy of at most a few tenths of a percent. For radii around two mean free paths, the new results agree with those of a variant of the moment method; for lower radii discrepancies of up to a few percent are found. Our new method does not work for the Klein-Kramers equation, a kinetic equation for Brownian particles. For the latter equation we obtain an estimate for the current at very low radii from the free space solution by Uhlenbeck and Ornstein. Its numerical evaluation strongly indicates an analytic behavior for small radii different from the one found in the BGK-case.

Suggested Citation

  • Widder, M.E. & Titulaer, U.M., 1991. "The growth of small droplets from a gas mixture; Results and estimates for very small radii," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 173(1), pages 125-140.
  • Handle: RePEc:eee:phsmap:v:173:y:1991:i:1:p:125-140
    DOI: 10.1016/0378-4371(91)90254-A
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/037843719190254A
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/0378-4371(91)90254-A?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:173:y:1991:i:1:p:125-140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.