Author
Listed:
- Perrot, F.
- Baumberger, T.
- Chan, C.K.
- Beysens, D.
Abstract
We review a number of situations where the formation and evolution of an interface from fluctuations are modified by the presence of an external (shear) flow. The process which derives the interface formation is spinodal decomposition. Experiments are performed by using light scattering techniques in binary liquids close to their critical miscibility point. Hydrodynamics can alter the fluctuations, thus defining “high (low) shear” regions where the fluctuations are strongly (weakly) affected. The situations in which the initial and final states of the system are in the low shear region lead to a very particular growth where the domains are thinned in one direction and ultimately homogenized. The domains still evolve in the other directions, thus leading to a kind of two-dimensional growth. The situations where final state is in the high shear region lead to a permanent state, in which the domains cannot grow above a shear-dependent length: when this length is made smaller than the correlation length, the system becomes homogeneous. Stopping the flow makes the phase separation to proceed in the same manner as it does after a thermal quench. Switching off the high shear thus provides a mean to quench a system. The situations where the initial state is one of high shear and the final state is one of low shear raises many questions: here fluctuations must evolve from an initial state where they are already out of equilibrium.
Suggested Citation
Perrot, F. & Baumberger, T. & Chan, C.K. & Beysens, D., 1991.
"Hydrodynamics, growth and interfaces,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 172(1), pages 87-102.
Handle:
RePEc:eee:phsmap:v:172:y:1991:i:1:p:87-102
DOI: 10.1016/0378-4371(91)90313-2
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:172:y:1991:i:1:p:87-102. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.