IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v159y1989i2p256-272.html
   My bibliography  Save this article

Step count number versus interaction time in jump Markovian dynamics

Author

Listed:
  • Vlad, Marcel Ovidiu
  • Pop, Amalia

Abstract

The stochastic analysis of jump Markovian models may be performed in terms either of the number of transition events q (the step count number) or in terms of the interaction time τ (the time interval that elapsed from the first occurence of a jump event). In order to describe the stochastic behavior of q and τ, a new stochastic formalism is suggested. The state probabilities attached to q and τ as well as the corresponding moments may be expressed in terms of the Green function attached to the phenomenological master equation. For time-homogeneous Markov processes with a constant overall jump frequency a detailed analysis is possible. The main results are the following. For large time, t → ∞, the second moments of q and τ have a different behavior. Whereas 〈Δτ2(t)〉 and 〈Δq(t) Δτ(t)〉 evolve towards constant values, the dispersion 〈Δq2(t)〉 increases linearly in time. For large times the random variables q and τ are practically uncorrelated.

Suggested Citation

  • Vlad, Marcel Ovidiu & Pop, Amalia, 1989. "Step count number versus interaction time in jump Markovian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 159(2), pages 256-272.
  • Handle: RePEc:eee:phsmap:v:159:y:1989:i:2:p:256-272
    DOI: 10.1016/0378-4371(89)90569-4
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0378437189905694
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/0378-4371(89)90569-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:159:y:1989:i:2:p:256-272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.