IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v158y1989i3p842-863.html
   My bibliography  Save this article

A probabilistic view on finite-size scaling in infinitely coordinated spherical models

Author

Listed:
  • Brankov, J.G.
  • Danchev, D.M.

Abstract

It is shown that the finite-size scaling functions of the infinitely coordinated spherical model are closely related to the limit probability distribution of a triangular array of properly normalized block spin variables. The triangular array is defined with the aid of a two- parameter family of Gibbs distributions which approach the critical point together with the increase of the size of the system.

Suggested Citation

  • Brankov, J.G. & Danchev, D.M., 1989. "A probabilistic view on finite-size scaling in infinitely coordinated spherical models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 158(3), pages 842-863.
  • Handle: RePEc:eee:phsmap:v:158:y:1989:i:3:p:842-863
    DOI: 10.1016/0378-4371(89)90494-9
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0378437189904949
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/0378-4371(89)90494-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brankov, J.G., 1990. "Finite-size effects in the approximating Hamiltonian method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 168(3), pages 1035-1054.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:158:y:1989:i:3:p:842-863. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.