IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v154y1988i1p157-182.html
   My bibliography  Save this article

On generalizations of the Debye equation for dielectric relaxation

Author

Listed:
  • Restuccia, L.
  • Kluitenberg, G.A.

Abstract

In some previous papers one of us (G.A.K.) discussed dielectric relaxation phenomena with the aid of non-equilibrium thermodynamics. In particular the Debye equation for dielectric relaxation in polar liquids was derived. It was also noted that generalizations of the Debye equation may be derived if one assumes that several microscopic phenomena occur which give rise to dielectric relaxation and that the contributions of these microscopic phenomena to the macroscopic polarization may be introduced as vectorial internal degrees of freedom in the entropy. If it is assumed that there are n vectorial internal degrees of freedom an explicit from for the relaxation equation may be derived, provided the developed formalism may be linearized. This relaxation equation has the form of a linear relation among the electric field E, the first n derivatives with respect to time of this field, the polarization vector P and the first n + 1 derivatives with respect to time of P. It is the purpose of the present paper to give full details of the derivations of the above mentioned results. It is also shown in this paper that if a part of the total polarization P is reversible (i.e. if this part does not contribute to the entropy production) the coefficient of the time derivative of order n + 1 of P in the relaxation equation is zero.

Suggested Citation

  • Restuccia, L. & Kluitenberg, G.A., 1988. "On generalizations of the Debye equation for dielectric relaxation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 154(1), pages 157-182.
  • Handle: RePEc:eee:phsmap:v:154:y:1988:i:1:p:157-182
    DOI: 10.1016/0378-4371(88)90186-0
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0378437188901860
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/0378-4371(88)90186-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ciancio, V. & Restuccia, L., 1990. "On the invariance of Onsager's reciprocal relations in the thermodynamic theory of dielectric relaxation phenomena," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 162(3), pages 489-498.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:154:y:1988:i:1:p:157-182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.