IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v148y1988i1p312-330.html
   My bibliography  Save this article

Time-asymptotics and the self-organization hypothesis for 2D Navier-Stokes equations

Author

Listed:
  • Van Groesen, E.

Abstract

In this paper we study the long-time behaviour of solutions with a two-dimensional structure of the Navier-Stokes equations on a periodic grid. From a rigorous investigation of the decrease of the energy E and the enstrophy W, it follows that the Rayleigh quotient Q=WE is monotonically decreasing on solutions. This is shown to imply that the spatial structure of any solution tends to a critical point of Q, which is the structure of some planar vortex, and that all these structures are unstable except for the fundamental one which has the longest wavelength. The time dependence of the approach towards this self-organized state is investigated in some detail. In the spectral plane, the mean-squared wave-numbers of both the spectral energy- and enstrophy density are shown to decrease as a function of time. For the enstrophy this implies that the normal cascade does not match the discriminating effect of the viscous dissipation.

Suggested Citation

  • Van Groesen, E., 1988. "Time-asymptotics and the self-organization hypothesis for 2D Navier-Stokes equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 148(1), pages 312-330.
  • Handle: RePEc:eee:phsmap:v:148:y:1988:i:1:p:312-330
    DOI: 10.1016/0378-4371(88)90149-5
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0378437188901495
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/0378-4371(88)90149-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:148:y:1988:i:1:p:312-330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.