IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v144y1987i1p1-16.html
   My bibliography  Save this article

Self-avoiding walks on random networks of resistors and diodes

Author

Listed:
  • Marković, D.
  • Milošević, S.
  • Stanley, H.E.

Abstract

We study the self-avoiding walks (SAW) on a square lattice whose various degrees of randomness encompasses many different random networks, including the incipient clusters of the directed, mixed and isotropic bond percolation. We apply the position-space renormalization group (PSRG) method and demonstrate that within the framework of this method one is bound to find that the critical exponent v of the mean end-to-end distance of SAW on various two-dimensional random networks should be equal to the critical exponent of SAW on the ordinary square lattice. A detailed analysis of this finding, and similar findings of other authors, lead us to conclude that a debatable opposite finding, which has been predicted on the basis of different approaches, could be attained after a substantial refinement of the method applied.

Suggested Citation

  • Marković, D. & Milošević, S. & Stanley, H.E., 1987. "Self-avoiding walks on random networks of resistors and diodes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 144(1), pages 1-16.
  • Handle: RePEc:eee:phsmap:v:144:y:1987:i:1:p:1-16
    DOI: 10.1016/0378-4371(87)90142-7
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0378437187901427
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/0378-4371(87)90142-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong, Gaogao & Tian, Lixin & Du, Ruijin & Fu, Min & Stanley, H. Eugene, 2014. "Analysis of percolation behaviors of clustered networks with partial support–dependence relations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 370-378.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:144:y:1987:i:1:p:1-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.