IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v137y1986i1p306-316.html
   My bibliography  Save this article

Phase space eigenfunctions of multidimensional quadratic hamiltonians

Author

Listed:
  • Dodonov, V.V.
  • Man'ko, V.I.

Abstract

We obtain the explicit expressions for phase space eigenfunctions (PSE), i.e. Weyl's symbols of dyadic operators like |n > , |m > being the solution of the Schrödinger equation with the Hamiltonian which is a quite arbitrary multidimensional quadratic form of the operators of Cartesian coordinates and conjugated to them momenta with time-dependent coefficients. It is shown that for an arbitrary quadratic Hamiltonian one can always construct the set of completely factorized PSE which are products of N factors, each factor being dependent only on two arguments for n≠m and on a single argument for n=m. These arguments are nothing but constants of motion of the correspondent classical system. PSE are expressed in terms of the associated Laguerre polynomials in the case of a discrete spectrum and in terms of the Airy functions in the continuous spectrum case. Three examples are considered: a harmonic oscillator with a time-dependent frequency, a charged particle in a nonstationary uniform magnetic field, and a particle in a time-dependent uniform potential field.

Suggested Citation

  • Dodonov, V.V. & Man'ko, V.I., 1986. "Phase space eigenfunctions of multidimensional quadratic hamiltonians," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 137(1), pages 306-316.
  • Handle: RePEc:eee:phsmap:v:137:y:1986:i:1:p:306-316
    DOI: 10.1016/0378-4371(86)90078-6
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0378437186900786
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/0378-4371(86)90078-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:137:y:1986:i:1:p:306-316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.