IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v132y1985i1p117-142.html
   My bibliography  Save this article

Geometrical and gauge equivalence of the generalized Hirota, Heisenberg and Wkis equations with linear inhomogeneities

Author

Listed:
  • Lakshmanan, M.
  • Ganesan, S.

Abstract

Integrable evolution equations can take several equivalent forms in a geometrical sense. Here we consider the equivalence of generalized versions involving linear inhomogeneities of three important nonlinear evolution equations, namely the Hirota, Heisenberg ferromagnetic spin and Wadati-Konno-Ichikawa-Shimizu (WKIS) equation through a moving helical space curve formalism and stereographic representation. From the geometrical consideration, we also construct suitable (2 × 2)-matrix linear eigenvalue equations, involving however non-isospectral flow: the eigenvalues evolve in time. However, these systems are also gauge equivalent. We briefly analyse the scattering problem and show that infinite number of constants of motion can exist for these systems.

Suggested Citation

  • Lakshmanan, M. & Ganesan, S., 1985. "Geometrical and gauge equivalence of the generalized Hirota, Heisenberg and Wkis equations with linear inhomogeneities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 132(1), pages 117-142.
  • Handle: RePEc:eee:phsmap:v:132:y:1985:i:1:p:117-142
    DOI: 10.1016/0378-4371(85)90120-7
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0378437185901207
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/0378-4371(85)90120-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kavitha, L. & Prabhu, A. & Gopi, D., 2009. "New exact shape changing solitary solutions of a generalized Hirota equation with nonlinear inhomogeneities," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2322-2329.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:132:y:1985:i:1:p:117-142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.