IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v125y1984i1p197-236.html
   My bibliography  Save this article

Exact solutions for spectra and Green's functions in random one-dimensional systems

Author

Listed:
  • Nieuwenhuizen, Th.M.

Abstract

For chains of harmonic oscillators with random masses a set of equations is derived, which determine the spatial Fourier components of the average one-particle Green's function. These equations are valid for complex values of the frequency. A relation between the spectral density and functions introduced by Schmidt is discussed. Exact solutions for this Green's function and the less complicated characteristics function-the analytic continuation into the complex frequency plane of the accumulated spectral density and the inverse localization length of the eigenfunctions-are derived for exponential distributions of the masses. For some cases the characteristic function is calculated numerically. For gamma distributions the equations are cast in the form of ordinary, higher order differential equations; these have been solved numerically for determining the characteristic function. For arbitrary mass distributions a cumulant expansion and a peculiar symmetry of the Green's function are discussed.

Suggested Citation

  • Nieuwenhuizen, Th.M., 1984. "Exact solutions for spectra and Green's functions in random one-dimensional systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 125(1), pages 197-236.
  • Handle: RePEc:eee:phsmap:v:125:y:1984:i:1:p:197-236
    DOI: 10.1016/0378-4371(84)90010-4
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0378437184900104
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/0378-4371(84)90010-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:125:y:1984:i:1:p:197-236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.