IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v117y1983i1p179-188.html
   My bibliography  Save this article

Random walks on lattices with points of two colours. I

Author

Listed:
  • Den Hollander, W.Th.F.
  • Kasteleyn, P.W.

Abstract

This paper is concerned with random walks on lattices with two kinds of points, black and white. The colours of the points are random variables with a translation invariant, but otherwise arbitrary, joint probability distribution. The steps of the walk are independent of the colours. We study the stochastic properties of the length of the subwalk from the starting point to a first black point and of subwalks between points visited in succession, and establish a number of exact relations. These relations can be applied to a trapping problem by identifying the black points with imperfect traps. An example is discussed.

Suggested Citation

  • Den Hollander, W.Th.F. & Kasteleyn, P.W., 1983. "Random walks on lattices with points of two colours. I," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 117(1), pages 179-188.
  • Handle: RePEc:eee:phsmap:v:117:y:1983:i:1:p:179-188
    DOI: 10.1016/0378-4371(83)90029-8
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0378437183900298
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/0378-4371(83)90029-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. den Hollander, W.Th.F. & Kasteleyn, P.W., 1982. "Random walks with ‘spontaneous emission’ on lattices with periodically distributed imperfect traps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 112(3), pages 523-543.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Felderhof, B.U., 1985. "Wigner solids and diffusion controlled reactions in a regular array of spheres," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 130(1), pages 34-56.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:117:y:1983:i:1:p:179-188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.