IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v109y1981i3p445-464.html
   My bibliography  Save this article

Convergence of the cluster-variation method for a system on a triangular lattice

Author

Listed:
  • Kevin McCoy, J.
  • Kikuchi, Ryoichi
  • Sato, Hiroshi

Abstract

The paper studies the convergence of the cluster-variation method to the rigorous result as the cluster size increases. The calculation is done on the phase boundary at T = 0 between the A2B-type ordered phase and the disordered phase on a two-dimensional triangular lattice with nearest-neighbor interaction. It is shown that the phase boundary at (T = 0) is obtained by maximizing the entropy under the constraint that only a limited number of atomic configurations are allowed. Formulations are developed for clusters of n = 3, 5, 7, 9,11, and 13 points. When thermodynamic quantities which are calculated using these clusters are plotted against 1/n, they approach the known rigorous (n = ∞) results more or less linearly but with a pseudo-period of δn = 6. An exception is the square of the long-range order, which bends down as 1/n tends to zero.

Suggested Citation

  • Kevin McCoy, J. & Kikuchi, Ryoichi & Sato, Hiroshi, 1981. "Convergence of the cluster-variation method for a system on a triangular lattice," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 109(3), pages 445-464.
  • Handle: RePEc:eee:phsmap:v:109:y:1981:i:3:p:445-464
    DOI: 10.1016/0378-4371(81)90005-4
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0378437181900054
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/0378-4371(81)90005-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:109:y:1981:i:3:p:445-464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.