IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v107y1981i3p533-552.html
   My bibliography  Save this article

On the evolution of higher dimensional Heisenberg continuum spin systems

Author

Listed:
  • Lakshmanan, M.
  • Daniel, M.

Abstract

We consider the evolution of a classical Heisenberg ferromagnetic spin chain in its continuum limit in higher spatial dimensions. It is shown that the evolution of a radially symmetric chain could be identified with the motion of a helical space curve as in the linear case. The resulting invariant equations for the curvature (radial energy density) and torsion (related to current density) are shown to be equivalent to a generalized nonlinear Schrödinger equation, similar to the one derived by Ruijgrok and Jurkiewicz recently. Equivalent linear equations as well as special static solutions of point singular type are obtained. Similarity solutions, a class of which belong to Riccati type, are discussed in detail. For general higher dimensions, a potentially useful formulation is presented: Under stereographic projection of the unit sphere of spin, the equation of motion takes a neater form even with the inclusion of anisotropic interactions. Classes of explicit solutions are reported in higher dimensions. Propagating spin waves, static spin waves of point singular nature and of finite energy in some cases are also discussed.

Suggested Citation

  • Lakshmanan, M. & Daniel, M., 1981. "On the evolution of higher dimensional Heisenberg continuum spin systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 107(3), pages 533-552.
  • Handle: RePEc:eee:phsmap:v:107:y:1981:i:3:p:533-552
    DOI: 10.1016/0378-4371(81)90186-2
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0378437181901862
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/0378-4371(81)90186-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:107:y:1981:i:3:p:533-552. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.