IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v106y1981i1p70-76.html
   My bibliography  Save this article

The hard sphere gas in the Boltzmann-Grad limit

Author

Listed:
  • Lanford, Oscar E.

Abstract

This talk will review what has been rigorously proved about the time-dependent behaviour of a gas of classical hard spheres in the limiting regime where the number n of particles per unit volume becomes infinitely large while the particle diameter ϵ goes to zero in such a way that nϵ2 approaches a finite non-zero limit. (It is in this limiting regime that the Boltzmann equation is expected to become exact.)

Suggested Citation

  • Lanford, Oscar E., 1981. "The hard sphere gas in the Boltzmann-Grad limit," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 106(1), pages 70-76.
  • Handle: RePEc:eee:phsmap:v:106:y:1981:i:1:p:70-76
    DOI: 10.1016/0378-4371(81)90207-7
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0378437181902077
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/0378-4371(81)90207-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baldovin, Marco & Caprini, Lorenzo & Vulpiani, Angelo, 2019. "Irreversibility and typicality: A simple analytical result for the Ehrenfest model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 422-429.
    2. Kalogeropoulos, Nikolaos, 2018. "Time irreversibility from symplectic non-squeezing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 202-210.
    3. Pérez-Cárdenas, Fernando C. & Resca, Lorenzo & Pegg, Ian L., 2016. "Microscopic reversibility and macroscopic irreversibility: A lattice gas model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 82-92.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:106:y:1981:i:1:p:70-76. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.