IDEAS home Printed from https://ideas.repec.org/a/eee/pacfin/v88y2024ics0927538x24003019.html
   My bibliography  Save this article

Corporate governance and financial distress in China a multi-dimensional nonlinear study based on machine learning

Author

Listed:
  • Meng, Qingbin
  • Zheng, Xinxing
  • Wang, Solomon

Abstract

Promoting governance efficiency is crucial for preventing corporate financial distress. However, previous research has been constrained by limited dimensions of governance predictors and insufficient linear estimations to predict financial distress. To address this issue, this study gathers 37 corporate governance indicators of Chinese publicly listed firms from 2009 to 2022 in the dimensions of ownership structure, board features and executive traits. The LightGBM machine learning approach is then used to compare the predicting power of these individual indicators, as well as the predicting power of the dimensions. The SHAP (SHapley Additive exPlanations) method is further adopted to conduct an in-depth interpretability analysis upon the established prediction. Our approach identifies the nonlinear effects of important corporate governance indicators on financial distress and prioritizes those indicators based on their impact levels. Our results show that the most influential indicator is institutional ownership, followed by managerial ownership and executive compensation disparity. In addition, the dimension of ownership structure has the highest predicting power among the three. Overall, our study provides new insights into how firms can optimize their corporate governance mechanisms to prevent financial distress.

Suggested Citation

  • Meng, Qingbin & Zheng, Xinxing & Wang, Solomon, 2024. "Corporate governance and financial distress in China a multi-dimensional nonlinear study based on machine learning," Pacific-Basin Finance Journal, Elsevier, vol. 88(C).
  • Handle: RePEc:eee:pacfin:v:88:y:2024:i:c:s0927538x24003019
    DOI: 10.1016/j.pacfin.2024.102549
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0927538X24003019
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.pacfin.2024.102549?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:pacfin:v:88:y:2024:i:c:s0927538x24003019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/pacfin .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.