IDEAS home Printed from https://ideas.repec.org/a/eee/pacfin/v68y2021ics0927538x21001128.html
   My bibliography  Save this article

How noise trading affects informational efficiency: Evidence from an order-driven market

Author

Listed:
  • Zhang, Chris H.
  • Kalev, Petko S.

Abstract

We use full order book data from the Australian Securities Exchange to investigate how noise trading affects informational efficiency of securities prices. In aggregate, noise trading harms price efficiency. However, this is driven mainly by higher levels of noise trading, indicating a non-linear effect. Further, behind the aggregate effects lies rich heterogeneity in how noise trading affects informational efficiency cross-sectionally. Noise trading harms informational efficiency of large and liquid stocks but can be beneficial in small and illiquid stocks, indicating that noise trading affects different stocks differently.

Suggested Citation

  • Zhang, Chris H. & Kalev, Petko S., 2021. "How noise trading affects informational efficiency: Evidence from an order-driven market," Pacific-Basin Finance Journal, Elsevier, vol. 68(C).
  • Handle: RePEc:eee:pacfin:v:68:y:2021:i:c:s0927538x21001128
    DOI: 10.1016/j.pacfin.2021.101605
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0927538X21001128
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.pacfin.2021.101605?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karl B. Diether & Christopher J. Malloy & Anna Scherbina, 2002. "Differences of Opinion and the Cross Section of Stock Returns," Journal of Finance, American Finance Association, vol. 57(5), pages 2113-2141, October.
    2. Adem Atmaz & Suleyman Basak, 2018. "Belief Dispersion in the Stock Market," Journal of Finance, American Finance Association, vol. 73(3), pages 1225-1279, June.
    3. Berkman, Henk & Koch, Paul D., 2008. "Noise trading and the price formation process," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 232-250, March.
    4. Carlé, Tim A. & Lahav, Yaron & Neugebauer, Tibor & Noussair, Charles N., 2019. "Heterogeneity of Beliefs and Trade in Experimental Asset Markets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 54(1), pages 215-245, February.
    5. Xuemin (Sterling) Yan & Zhe Zhang, 2009. "Institutional Investors and Equity Returns: Are Short-term Institutions Better Informed?," The Review of Financial Studies, Society for Financial Studies, vol. 22(2), pages 893-924, February.
    6. Chordia, Tarun & Roll, Richard & Subrahmanyam, Avanidhar, 2011. "Recent trends in trading activity and market quality," Journal of Financial Economics, Elsevier, vol. 101(2), pages 243-263, August.
    7. Brad M. Barber & Terrance Odean & Ning Zhu, 2009. "Do Retail Trades Move Markets?," The Review of Financial Studies, Society for Financial Studies, vol. 22(1), pages 151-186, January.
    8. Grossman, Sanford J & Stiglitz, Joseph E, 1980. "On the Impossibility of Informationally Efficient Markets," American Economic Review, American Economic Association, vol. 70(3), pages 393-408, June.
    9. Ron Kaniel & Gideon Saar & Sheridan Titman, 2008. "Individual Investor Trading and Stock Returns," Journal of Finance, American Finance Association, vol. 63(1), pages 273-310, February.
    10. Chen, Yong & Kelly, Bryan & Wu, Wei, 2020. "Sophisticated investors and market efficiency: Evidence from a natural experiment," Journal of Financial Economics, Elsevier, vol. 138(2), pages 316-341.
    11. Huang, Hong-Gia & Tsai, Wei-Che & Weng, Pei-Shih & Wu, Ming-Hung, 2021. "Volatility of order imbalance of institutional traders and expected asset returns: Evidence from Taiwan," Journal of Financial Markets, Elsevier, vol. 52(C).
    12. Richard W. Sias, 2004. "Institutional Herding," The Review of Financial Studies, Society for Financial Studies, vol. 17(1), pages 165-206.
    13. Glosten, Lawrence R. & Milgrom, Paul R., 1985. "Bid, ask and transaction prices in a specialist market with heterogeneously informed traders," Journal of Financial Economics, Elsevier, vol. 14(1), pages 71-100, March.
    14. John Y. Campbell & Sanford J. Grossman & Jiang Wang, 1993. "Trading Volume and Serial Correlation in Stock Returns," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(4), pages 905-939.
    15. Mark Lang & Karl V. Lins & Mark Maffett, 2012. "Transparency, Liquidity, and Valuation: International Evidence on When Transparency Matters Most," Journal of Accounting Research, Wiley Blackwell, vol. 50(3), pages 729-774, June.
    16. Hendershott, Terrence & Livdan, Dmitry & Schürhoff, Norman, 2015. "Are institutions informed about news?," Journal of Financial Economics, Elsevier, vol. 117(2), pages 249-287.
    17. Thierry Foucault & David Sraer & David J. Thesmar, 2011. "Individual Investors and Volatility," Journal of Finance, American Finance Association, vol. 66(4), pages 1369-1406, August.
    18. Lee, Charles M C & Ready, Mark J, 1991. "Inferring Trade Direction from Intraday Data," Journal of Finance, American Finance Association, vol. 46(2), pages 733-746, June.
    19. Amihud, Yakov, 2002. "Illiquidity and stock returns: cross-section and time-series effects," Journal of Financial Markets, Elsevier, vol. 5(1), pages 31-56, January.
    20. Lee, Deok-Hyeon & Min, Byoung-Kyu & Kim, Tong Suk, 2019. "Dispersion of beliefs, ambiguity, and the cross-section of stock returns," Journal of Empirical Finance, Elsevier, vol. 50(C), pages 43-56.
    21. Chordia, Tarun & Roll, Richard & Subrahmanyam, Avanidhar, 2000. "Commonality in liquidity," Journal of Financial Economics, Elsevier, vol. 56(1), pages 3-28, April.
    22. Hasbrouck, Joel & Saar, Gideon, 2013. "Low-latency trading," Journal of Financial Markets, Elsevier, vol. 16(4), pages 646-679.
    23. Terrence Hendershott & Charles M. Jones, 2005. "Island Goes Dark: Transparency, Fragmentation, and Regulation," The Review of Financial Studies, Society for Financial Studies, vol. 18(3), pages 743-793.
    24. Comerton-Forde, Carole & Putniņš, Tālis J., 2015. "Dark trading and price discovery," Journal of Financial Economics, Elsevier, vol. 118(1), pages 70-92.
    25. Asani Sarkar & Robert A. Schwartz, 2009. "Market Sidedness: Insights into Motives for Trade Initiation," Journal of Finance, American Finance Association, vol. 64(1), pages 375-423, February.
    26. Andreou, Panayiotis C. & Kagkadis, Anastasios & Philip, Dennis & Tuneshev, Ruslan, 2018. "Differences in options investors’ expectations and the cross-section of stock returns," Journal of Banking & Finance, Elsevier, vol. 94(C), pages 315-336.
    27. Choi, Nicole & Sias, Richard W., 2009. "Institutional industry herding," Journal of Financial Economics, Elsevier, vol. 94(3), pages 469-491, December.
    28. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    29. Andrew W. Lo, A. Craig MacKinlay, 1988. "Stock Market Prices do not Follow Random Walks: Evidence from a Simple Specification Test," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 41-66.
    30. Hiemstra, Craig & Jones, Jonathan D, 1994. "Testing for Linear and Nonlinear Granger Causality in the Stock Price-Volume Relation," Journal of Finance, American Finance Association, vol. 49(5), pages 1639-1664, December.
    31. Fong, Kingsley Y. L. & Gallagher, David R. & Lee, Adrian D., 2014. "Individual Investors and Broker Types," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 49(2), pages 431-451, April.
    32. Ekkehart Boehmer & Eric K. Kelley, 2009. "Institutional Investors and the Informational Efficiency of Prices," The Review of Financial Studies, Society for Financial Studies, vol. 22(9), pages 3563-3594, September.
    33. Siganos, Antonios & Vagenas-Nanos, Evangelos & Verwijmeren, Patrick, 2017. "Divergence of sentiment and stock market trading," Journal of Banking & Finance, Elsevier, vol. 78(C), pages 130-141.
    34. Kewei Hou & Tobias J. Moskowitz, 2005. "Market Frictions, Price Delay, and the Cross-Section of Expected Returns," The Review of Financial Studies, Society for Financial Studies, vol. 18(3), pages 981-1020.
    35. Andrews,Donald W. K. & Stock,James H. (ed.), 2005. "Identification and Inference for Econometric Models," Cambridge Books, Cambridge University Press, number 9780521844413, September.
    36. Albert Wang, F., 2010. "Informed arbitrage with speculative noise trading," Journal of Banking & Finance, Elsevier, vol. 34(2), pages 304-313, February.
    37. Narayan, Paresh Kumar & Narayan, Seema & Westerlund, Joakim, 2015. "Do order imbalances predict Chinese stock returns? New evidence from intraday data," Pacific-Basin Finance Journal, Elsevier, vol. 34(C), pages 136-151.
    38. Carlin, Bruce I. & Longstaff, Francis A. & Matoba, Kyle, 2014. "Disagreement and asset prices," Journal of Financial Economics, Elsevier, vol. 114(2), pages 226-238.
    39. Snehal Banerjee & Ilan Kremer, 2010. "Disagreement and Learning: Dynamic Patterns of Trade," Journal of Finance, American Finance Association, vol. 65(4), pages 1269-1302, August.
    40. Michael J. Barclay, 2003. "Price Discovery and Trading After Hours," The Review of Financial Studies, Society for Financial Studies, vol. 16(4), pages 1041-1073.
    41. Ekkehart Boehmer & Juan (Julie) Wu, 2013. "Short Selling and the Price Discovery Process," The Review of Financial Studies, Society for Financial Studies, vol. 26(2), pages 287-322.
    42. Chordia, Tarun & Roll, Richard & Subrahmanyam, Avanidhar, 2008. "Liquidity and market efficiency," Journal of Financial Economics, Elsevier, vol. 87(2), pages 249-268, February.
    43. Foley, Sean & Putniņš, Tālis J., 2016. "Should we be afraid of the dark? Dark trading and market quality," Journal of Financial Economics, Elsevier, vol. 122(3), pages 456-481.
    44. Jiang, Hao & Sun, Zheng, 2014. "Dispersion in beliefs among active mutual funds and the cross-section of stock returns," Journal of Financial Economics, Elsevier, vol. 114(2), pages 341-365.
    45. Andrea Buraschi & Alexei Jiltsov, 2006. "Model Uncertainty and Option Markets with Heterogeneous Beliefs," Journal of Finance, American Finance Association, vol. 61(6), pages 2841-2897, December.
    46. Snehal Banerjee, 2011. "Learning from Prices and the Dispersion in Beliefs," The Review of Financial Studies, Society for Financial Studies, vol. 24(9), pages 3025-3068.
    47. Tarun Chordia & Jianfeng Hu & Avanidhar Subrahmanyam & Qing Tong, 2019. "Order Flow Volatility and Equity Costs of Capital," Management Science, INFORMS, vol. 65(4), pages 1520-1551, April.
    48. Gallant, A Ronald & Rossi, Peter E & Tauchen, George, 1992. "Stock Prices and Volume," The Review of Financial Studies, Society for Financial Studies, vol. 5(2), pages 199-242.
    49. Alok Kumar & Charles M.C. Lee, 2006. "Retail Investor Sentiment and Return Comovements," Journal of Finance, American Finance Association, vol. 61(5), pages 2451-2486, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chu, Gang & Dowling, Michael & Shen, Dehua & Zhang, Yongjie, 2023. "Information demand density matters: Evidence from the post-earnings announcement drift," International Review of Financial Analysis, Elsevier, vol. 86(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Chris H. & Frijns, Bart, 2019. "Noise trading and informational efficiency," EconStor Preprints 198037, ZBW - Leibniz Information Centre for Economics.
    2. Vinay Patel, 2015. "Price Discovery in US and Australian Stock and Options Markets," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 27, July-Dece.
    3. Vinay Patel, 2015. "Price Discovery in US and Australian Stock and Options Markets," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 6-2015, January-A.
    4. Ibikunle, Gbenga & Aquilina, Matteo & Diaz-Rainey, Ivan & Sun, Yuxin, 2021. "City goes dark: Dark trading and adverse selection in aggregate markets," Journal of Empirical Finance, Elsevier, vol. 64(C), pages 1-22.
    5. Thanh Huong Nguyen, 2019. "Information and Noise in Stock Markets: Evidence on the Determinants and Effects Using New Empirical Measures," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 7-2019, January-A.
    6. Craig W. Holden & Stacey Jacobsen & Avanidhar Subrahmanyam, 2014. "The Empirical Analysis of Liquidity," Foundations and Trends(R) in Finance, now publishers, vol. 8(4), pages 263-365, December.
    7. Peress, Joel & Schmidt, Daniel, 2021. "Noise traders incarnate: Describing a realistic noise trading process," Journal of Financial Markets, Elsevier, vol. 54(C).
    8. Jagjeev Dosanjh, 2017. "Exchange Initiatives and Market Efficiency: Evidence from the Australian Securities Exchange," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2017, January-A.
    9. Foley, Sean & Putniņš, Tālis J., 2016. "Should we be afraid of the dark? Dark trading and market quality," Journal of Financial Economics, Elsevier, vol. 122(3), pages 456-481.
    10. Albuquerque, Rui & Song, Shiyun & Yao, Chen, 2020. "The price effects of liquidity shocks: A study of the SEC’s tick size experiment," Journal of Financial Economics, Elsevier, vol. 138(3), pages 700-724.
    11. Mudalige, Priyantha & Duong, Huu Nhan & Kalev, Petko S. & Gupta, Kartick, 2020. "Who trades in competing firms around earnings announcements," Pacific-Basin Finance Journal, Elsevier, vol. 59(C).
    12. Li, Wei & Rhee, Ghon & Wang, Steven Shuye, 2017. "Differences in herding: Individual vs. institutional investors," Pacific-Basin Finance Journal, Elsevier, vol. 45(C), pages 174-185.
    13. Blankespoor, Elizabeth & deHaan, Ed & Marinovic, Iván, 2020. "Disclosure processing costs, investors’ information choice, and equity market outcomes: A review," Journal of Accounting and Economics, Elsevier, vol. 70(2).
    14. Rzayev, Khaladdin & Ibikunle, Gbenga, 2019. "A state-space modeling of the information content of trading volume," Journal of Financial Markets, Elsevier, vol. 46(C).
    15. Xu, Liao & Yin, Xiangkang & Zhao, Jing, 2019. "The sidedness and informativeness of ETF trading and the market efficiency of their underlying indexes," Pacific-Basin Finance Journal, Elsevier, vol. 58(C).
    16. Jing Nie, 2019. "High‐Frequency Price Discovery and Price Efficiency on Interest Rate Futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(11), pages 1394-1434, November.
    17. Albuquerque, Rui & Song, Shiyun & Yao, Chen, 2017. "The Price Effects of Liquidity Shocks: A Study of SEC’s Tick-Size Experiment," CEPR Discussion Papers 12486, C.E.P.R. Discussion Papers.
    18. Comerton-Forde, Carole & Putniņš, Tālis J., 2015. "Dark trading and price discovery," Journal of Financial Economics, Elsevier, vol. 118(1), pages 70-92.
    19. repec:uts:finphd:34 is not listed on IDEAS
    20. Xu, Liao & Yin, Xiangkang, 2017. "Does ETF trading affect the efficiency of the underlying index?," International Review of Financial Analysis, Elsevier, vol. 51(C), pages 82-101.
    21. Hao Li & Zhisheng Li, 2022. "The effect of daily price limits on stock liquidity: Evidence from the Chinese stock market," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 62(5), pages 4885-4917, December.

    More about this item

    Keywords

    Market microstructure; Noise trading; Belief dispersion; Informational efficiency;
    All these keywords.

    JEL classification:

    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G18 - Financial Economics - - General Financial Markets - - - Government Policy and Regulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:pacfin:v:68:y:2021:i:c:s0927538x21001128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/pacfin .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.