IDEAS home Printed from https://ideas.repec.org/a/eee/oprepe/v4y2017icp1-11.html
   My bibliography  Save this article

On the generalization of constraint programming and boolean satisfiability solving techniques to schedule a resource-constrained project consisting of multi-mode jobs

Author

Listed:
  • Schnell, Alexander
  • Hartl, Richard F.

Abstract

In our paper, we analyze new exact approaches for the multi-mode resource-constrained project scheduling (MRCPSP) problem with the aim of makespan minimization. For the single-mode RCPSP (SRCPSP) recent exact algorithms combine a Branch and Bound algorithm with principles from Constraint Programming (CP) and Boolean Satisfiability Solving (SAT). We extend the above principles for the solution of MRCPSP instances. This generalization is on the one hand achieved on the modeling level. We propose three CP-based formulations of the MRCPSP for the G12 CP platform and the optimization framework SCIP which both provide solution techniques combining CP and SAT principles. For one of the latter we implemented a new global constraint for SCIP, which generalizes the domain propagation and explanation generation principles for renewable resources in the context of multi-mode jobs. Our constraint applies the above principles in a more general way than the existing global constraint in SCIP. We compare our approaches with the state-of-the-art exact algorithm from the literature on MRCPSP instances with 20 and 30 jobs. Our computational experiments show that we can outperform the latter approach on these instances. Furthermore, we are the first to close (find the optimal solution and prove its optimality for) 628 open instances with 50 and 100 jobs from the literature. In addition, we improve the best known lower bound of 2815 instances and the best known upper bound of 151 instances.

Suggested Citation

  • Schnell, Alexander & Hartl, Richard F., 2017. "On the generalization of constraint programming and boolean satisfiability solving techniques to schedule a resource-constrained project consisting of multi-mode jobs," Operations Research Perspectives, Elsevier, vol. 4(C), pages 1-11.
  • Handle: RePEc:eee:oprepe:v:4:y:2017:i:c:p:1-11
    DOI: 10.1016/j.orp.2017.01.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2214716016300458
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.orp.2017.01.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Felix Hübner & Patrick Gerhards & Christian Stürck & Rebekka Volk, 2021. "Solving the nuclear dismantling project scheduling problem by combining mixed-integer and constraint programming techniques and metaheuristics," Journal of Scheduling, Springer, vol. 24(3), pages 269-290, June.
    2. Hartmann, Sönke & Briskorn, Dirk, 2022. "An updated survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 297(1), pages 1-14.
    3. Servranckx, Tom & Coelho, José & Vanhoucke, Mario, 2024. "A genetic algorithm for the Resource-Constrained Project Scheduling Problem with Alternative Subgraphs using a boolean satisfiability solver," European Journal of Operational Research, Elsevier, vol. 316(3), pages 815-827.
    4. Behrad Barghi & Shahram Shadrokh Sikari, 2022. "Meta-heuristic Solution with Considering Setup Time for Multi-Skilled Project Scheduling Problem," SN Operations Research Forum, Springer, vol. 3(1), pages 1-23, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:oprepe:v:4:y:2017:i:c:p:1-11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/operations-research-perspectives .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.