IDEAS home Printed from https://ideas.repec.org/a/eee/oprepe/v13y2024ics2214716024000198.html
   My bibliography  Save this article

δ-perturbation of bilevel optimization problems: An error bound analysis

Author

Listed:
  • Antoniou, Margarita
  • Sinha, Ankur
  • Papa, Gregor

Abstract

In this paper, we analyze a perturbed formulation of bilevel optimization problems, which we refer to as δ-perturbed formulation. The δ-perturbed formulation allows to handle the lower level optimization problem efficiently when there are multiple lower level optimal solutions. By using an appropriate perturbation strategy for the optimistic or pessimistic formulation, one can ensure that the optimization problem at the lower level contains only a single (approximate) optimal solution for any given decision at the upper level. The optimistic or the pessimistic bilevel optimal solution can then be efficiently searched for by algorithms that rely on solving the lower level optimization problem multiple times during the solution search procedure. The δ-perturbed formulation is arrived at by adding the upper level objective function to the lower level objective function after multiplying the upper level objective by a small positive/negative δ. We provide a proof that the δ-perturbed formulation is approximately equivalent to the original optimistic or pessimistic formulation and give an error bound for the approximation. We apply this scheme to a class of algorithms that attempts to solve optimistic and pessimistic variants of bilevel optimization problems by repeatedly solving the lower level optimization problem.

Suggested Citation

  • Antoniou, Margarita & Sinha, Ankur & Papa, Gregor, 2024. "δ-perturbation of bilevel optimization problems: An error bound analysis," Operations Research Perspectives, Elsevier, vol. 13(C).
  • Handle: RePEc:eee:oprepe:v:13:y:2024:i:c:s2214716024000198
    DOI: 10.1016/j.orp.2024.100315
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2214716024000198
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.orp.2024.100315?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:oprepe:v:13:y:2024:i:c:s2214716024000198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/operations-research-perspectives .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.