IDEAS home Printed from https://ideas.repec.org/a/eee/oprepe/v13y2024ics2214716024000150.html
   My bibliography  Save this article

Research on green supply chain finance risk identification based on two-stage deep learning

Author

Listed:
  • Liu, Ying
  • Li, Sizhe
  • Yu, Chunmei
  • Lv, Mingli

Abstract

As a resonance product between financial services and the upgrading of the green industry, green supply chain finance has garnered extensive attention in the process of ecological civilization construction. Effectively promoting the green transformation of small and medium-sized enterprises and achieving the "dual carbon" goals necessitate the avoidance of corporate green risks. However, the complex interdependence and information asymmetry among green supply chain finance enterprises result in data characteristics such as multi-source small samples and high-dimensional imbalance. To address these issues, this paper proposes a risk assessment model based on two-stage deep learning. In the first stage, we employ Generative Adversarial Network (GAN) to generate minority class default samples, and utilize Stacked Auto-Encoder (SAE) to extract data features with closed-form parameter calculation capability. In the second stage, the obtained features are input into a Deep Neural Network (DNN), and parameter learning and model optimization are conducted through joint training. Finally, to model low-order feature interactions, we integrate the Support Vector Machine (SVM) algorithm. The paper is grounded in the green innovation production of enterprises, collecting financial data of 176 upstream and downstream enterprises and corresponding core enterprise green indicators from 2013 to 2022. Experimental results demonstrate that GAN oversampling technique not only enhances the model's AUC metric but also significantly improves the F1 score. Compared with traditional deep learning methods, the proposed two-stage deep integration model effectively reduces training loss and exhibits superiority in identifying green supply chain finance risks.

Suggested Citation

  • Liu, Ying & Li, Sizhe & Yu, Chunmei & Lv, Mingli, 2024. "Research on green supply chain finance risk identification based on two-stage deep learning," Operations Research Perspectives, Elsevier, vol. 13(C).
  • Handle: RePEc:eee:oprepe:v:13:y:2024:i:c:s2214716024000150
    DOI: 10.1016/j.orp.2024.100311
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2214716024000150
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.orp.2024.100311?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:oprepe:v:13:y:2024:i:c:s2214716024000150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/operations-research-perspectives .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.