IDEAS home Printed from https://ideas.repec.org/a/eee/matsoc/v66y2013i2p169-175.html
   My bibliography  Save this article

From singularity theory to finiteness of Walrasian equilibria

Author

Listed:
  • Castro, Sofia B.S.D.
  • Dakhlia, Sami
  • Gothen, Peter B.

Abstract

The main result of this paper states that there exists a residual subset of the set of critical economies whose associated equilibria are finite in number. We also show that this subset does not contain any open set and therefore the result is the best possible for our choice of topology (compact-open topology). The proof rests on results and concepts from singularity theory.

Suggested Citation

  • Castro, Sofia B.S.D. & Dakhlia, Sami & Gothen, Peter B., 2013. "From singularity theory to finiteness of Walrasian equilibria," Mathematical Social Sciences, Elsevier, vol. 66(2), pages 169-175.
  • Handle: RePEc:eee:matsoc:v:66:y:2013:i:2:p:169-175
    DOI: 10.1016/j.mathsocsci.2013.03.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165489613000309
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.mathsocsci.2013.03.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Debreu, Gerard, 1970. "Economies with a Finite Set of Equilibria," Econometrica, Econometric Society, vol. 38(3), pages 387-392, May.
    2. Mas-Colell, Andreu, 1977. "On the equilibrium price set of an exchange economy," Journal of Mathematical Economics, Elsevier, vol. 4(2), pages 117-126, August.
    3. Mas-Colell, Andreu & Nachbar, John H., 1991. "On the finiteness of the number of critical equilibria, with an application to random selections," Journal of Mathematical Economics, Elsevier, vol. 20(4), pages 397-409.
    4. Castro, Sofia B.S.D. & Dakhlia, Sami & Gothen, Peter B., 2010. "Direct perturbations of aggregate excess demand," Journal of Mathematical Economics, Elsevier, vol. 46(4), pages 562-571, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kehoe, Timothy J. & Levine, David K., 1984. "Regularity in overlapping generations exchange economies," Journal of Mathematical Economics, Elsevier, vol. 13(1), pages 69-93, April.
    2. Gorokhovsky, Alexander & Rubinchik, Anna, 2022. "Necessary and sufficient conditions for determinacy of asymptotically stationary equilibria in OLG models," Journal of Economic Theory, Elsevier, vol. 204(C).
    3. Kung, Fan-chin, 2008. "Voluntary contributions to multiple public goods in a production economy with widespread externalities," Journal of Mathematical Economics, Elsevier, vol. 44(12), pages 1364-1378, December.
    4. Castro, Sofia B.S.D. & Dakhlia, Sami & Gothen, Peter B., 2010. "Direct perturbations of aggregate excess demand," Journal of Mathematical Economics, Elsevier, vol. 46(4), pages 562-571, July.
    5. Pascal Gauthier & Timothy J. Kehoe & Erwan Quintin, 2022. "Constructing pure-exchange economies with many equilibria," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 73(2), pages 541-564, April.
    6. Mas-Colell, Andreu & Monteiro, Paulo K., 1996. "Self-fulfilling equilibria: An existence theorem for a general state space," Journal of Mathematical Economics, Elsevier, vol. 26(1), pages 51-62.
    7. Michael Zierhut, 2021. "Generic regularity of differentiated product oligopolies," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(1), pages 341-374, February.
    8. R. M. Harstad & R. Selten, 2014. "Bounded-rationality models:tasks to become intellectually competitive," Voprosy Ekonomiki, NP Voprosy Ekonomiki, issue 5.
    9. John Geanakoplos, 2008. "Overlapping Generations Models of General Equilibrium," Cowles Foundation Discussion Papers 1663, Cowles Foundation for Research in Economics, Yale University.
    10. Kubler, Felix & Schmedders, Karl, 2010. "Competitive equilibria in semi-algebraic economies," Journal of Economic Theory, Elsevier, vol. 145(1), pages 301-330, January.
    11. Bernard Dumas & Andrew Lyasoff, 2012. "Incomplete-Market Equilibria Solved Recursively on an Event Tree," Journal of Finance, American Finance Association, vol. 67(5), pages 1897-1941, October.
    12. Bonnisseau, Jean-Marc & Nguenamadji, Orntangar, 2010. "On the uniqueness of local equilibria," Journal of Mathematical Economics, Elsevier, vol. 46(5), pages 623-632, September.
    13. Manjira Datta & Kevin Reffett & Łukasz Woźny, 2018. "Comparing recursive equilibrium in economies with dynamic complementarities and indeterminacy," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 66(3), pages 593-626, October.
    14. Chichilnisky, Graciela & Kalman, P.J., 1977. "Properties of critical points and operators in economics," MPRA Paper 7976, University Library of Munich, Germany.
    15. Hens, Thorsten & Pilgrim, Beate, 2004. "Sunspot Equilibria and the Transfer Paradox," Discussion Papers 2004/14, Norwegian School of Economics, Department of Business and Management Science.
    16. Claudio Mattalia, 2003. "Existence of solutions and asset pricing bubbles in general equilibrium models," ICER Working Papers - Applied Mathematics Series 02-2003, ICER - International Centre for Economic Research.
    17. Charalambos Aliprantis & Kim Border & Owen Burkinshaw, 1996. "Market economies with many commodities," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 19(1), pages 113-185, March.
    18. Riedel, Frank, 2005. "Generic determinacy of equilibria with local substitution," Journal of Mathematical Economics, Elsevier, vol. 41(4-5), pages 603-616, August.
    19. Behrens, Kristian, 2007. "On the location and lock-in of cities: Geography vs transportation technology," Regional Science and Urban Economics, Elsevier, vol. 37(1), pages 22-45, January.
    20. Rui Pascoa, Mario & Ribeiro da Costa Werlang, Sergio, 1999. "Determinacy of equilibria in nonsmooth economies," Journal of Mathematical Economics, Elsevier, vol. 32(3), pages 289-302, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matsoc:v:66:y:2013:i:2:p:169-175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505565 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.