IDEAS home Printed from https://ideas.repec.org/a/eee/matsoc/v64y2012i1p48-56.html
   My bibliography  Save this article

Committee selection under weight constraints

Author

Listed:
  • Klamler, Christian
  • Pferschy, Ulrich
  • Ruzika, Stefan

Abstract

In this paper we investigate the problem of selecting a committee consisting of k members from a list of m candidates. Each candidate has a certain cost or weight. The choice of the k-committee has to satisfy some budget or weight constraint: the sum of the weights of all committee members must not exceed a given value W. While the former part of the problem is a typical question in Social Choice Theory, the latter stems from Operations Research. The purpose of this paper is to link these two research fields: we first characterize reasonable ways of ranking sets of objects, i.e., candidates, and then develop efficient algorithms for the actual computation of optimal committees.

Suggested Citation

  • Klamler, Christian & Pferschy, Ulrich & Ruzika, Stefan, 2012. "Committee selection under weight constraints," Mathematical Social Sciences, Elsevier, vol. 64(1), pages 48-56.
  • Handle: RePEc:eee:matsoc:v:64:y:2012:i:1:p:48-56
    DOI: 10.1016/j.mathsocsci.2011.11.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165489611001272
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.mathsocsci.2011.11.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barbera, Salvador & Masso, Jordi & Neme, Alejandro, 2005. "Voting by committees under constraints," Journal of Economic Theory, Elsevier, vol. 122(2), pages 185-205, June.
    2. Darmann, Andreas & Klamler, Christian & Pferschy, Ulrich, 2009. "Maximizing the minimum voter satisfaction on spanning trees," Mathematical Social Sciences, Elsevier, vol. 58(2), pages 238-250, September.
    3. Brams, Steven J. & Fishburn, Peter C., 2002. "Voting procedures," Handbook of Social Choice and Welfare, in: K. J. Arrow & A. K. Sen & K. Suzumura (ed.), Handbook of Social Choice and Welfare, edition 1, volume 1, chapter 4, pages 173-236, Elsevier.
    4. Steven Brams & D. Kilgour & M. Sanver, 2007. "A minimax procedure for electing committees," Public Choice, Springer, vol. 132(3), pages 401-420, September.
    5. Andreas Darmann & Christian Klamler & Ulrich Pferschy, 2011. "Finding socially best spanning trees," Theory and Decision, Springer, vol. 70(4), pages 511-527, April.
    6. Caprara, Alberto & Kellerer, Hans & Pferschy, Ulrich & Pisinger, David, 2000. "Approximation algorithms for knapsack problems with cardinality constraints," European Journal of Operational Research, Elsevier, vol. 123(2), pages 333-345, June.
    7. Darmann, Andreas & Klamler, Christian & Pferschy, Ulrich, 2010. "A note on maximizing the minimum voter satisfaction on spanning trees," Mathematical Social Sciences, Elsevier, vol. 60(1), pages 82-85, July.
    8. Christian Klamler & Ulrich Pferschy, 2007. "The traveling group problem," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 29(3), pages 429-452, October.
    9. Monroe, Burt L., 1995. "Fully Proportional Representation," American Political Science Review, Cambridge University Press, vol. 89(4), pages 925-940, December.
    10. Chamberlin, John R. & Courant, Paul N., 1983. "Representative Deliberations and Representative Decisions: Proportional Representation and the Borda Rule," American Political Science Review, Cambridge University Press, vol. 77(3), pages 718-733, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Darmann, Andreas, 2013. "How hard is it to tell which is a Condorcet committee?," Mathematical Social Sciences, Elsevier, vol. 66(3), pages 282-292.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haris Aziz & Markus Brill & Vincent Conitzer & Edith Elkind & Rupert Freeman & Toby Walsh, 2017. "Justified representation in approval-based committee voting," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 48(2), pages 461-485, February.
    2. Darmann, Andreas, 2013. "How hard is it to tell which is a Condorcet committee?," Mathematical Social Sciences, Elsevier, vol. 66(3), pages 282-292.
    3. Egor Ianovski, 2022. "Electing a committee with dominance constraints," Annals of Operations Research, Springer, vol. 318(2), pages 985-1000, November.
    4. Kamesh Munagala & Yiheng Shen & Kangning Wang & Zhiyi Wang, 2021. "Approximate Core for Committee Selection via Multilinear Extension and Market Clearing," Papers 2110.12499, arXiv.org.
    5. Steven J. Brams & D. Marc Kilgour & Richard F. Potthoff, 2019. "Multiwinner approval voting: an apportionment approach," Public Choice, Springer, vol. 178(1), pages 67-93, January.
    6. Edith Elkind & Piotr Faliszewski & Piotr Skowron & Arkadii Slinko, 2017. "Properties of multiwinner voting rules," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 48(3), pages 599-632, March.
    7. Andreas Darmann & Christian Klamler & Ulrich Pferschy, 2011. "Finding socially best spanning trees," Theory and Decision, Springer, vol. 70(4), pages 511-527, April.
    8. Markus Brill & Jean-François Laslier & Piotr Skowron, 2018. "Multiwinner approval rules as apportionment methods," Journal of Theoretical Politics, , vol. 30(3), pages 358-382, July.
    9. Duddy, Conal, 2014. "Electing a representative committee by approval ballot: An impossibility result," Economics Letters, Elsevier, vol. 124(1), pages 14-16.
    10. Steven Brams & Michael Hansen & Michael Orrison, 2006. "Dead Heat: The 2006 Public Choice Society Election," Public Choice, Springer, vol. 128(3), pages 361-366, September.
    11. Kamwa, Eric, 2017. "On stable rules for selecting committees," Journal of Mathematical Economics, Elsevier, vol. 70(C), pages 36-44.
    12. Mostapha Diss & Eric Kamwa & Abdelmonaim Tlidi, 2020. "On Some k -scoring Rules for Committee Elections: Agreement and Condorcet Principle," Revue d'économie politique, Dalloz, vol. 130(5), pages 699-725.
    13. Adam Graham-Squire & Matthew I. Jones & David McCune, 2024. "New fairness criteria for truncated ballots in multi-winner ranked-choice elections," Papers 2408.03926, arXiv.org.
    14. Richard F. Potthoff & Steven J. Brams, 1998. "Proportional Representation," Journal of Theoretical Politics, , vol. 10(2), pages 147-178, April.
    15. Anna-Sophie Kurella & Salvatore Barbaro, 2024. "On the Polarization Premium for radical parties in PR electoral systems," Working Papers 2410, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    16. Hayrullah Dindar & Gilbert Laffond & Jean Lainé, 2021. "Referendum Paradox for Party-List Proportional Representation," Group Decision and Negotiation, Springer, vol. 30(1), pages 191-220, February.
    17. Dan Alger, 2006. "Voting by proxy," Public Choice, Springer, vol. 126(1), pages 1-26, January.
    18. Martin Lackner & Piotr Skowron, 2017. "Consistent Approval-Based Multi-Winner Rules," Papers 1704.02453, arXiv.org, revised Oct 2019.
    19. Darmann, Andreas & Klamler, Christian & Pferschy, Ulrich, 2010. "A note on maximizing the minimum voter satisfaction on spanning trees," Mathematical Social Sciences, Elsevier, vol. 60(1), pages 82-85, July.
    20. Eklund, Patrik & Rusinowska, Agnieszka & De Swart, Harrie, 2007. "Consensus reaching in committees," European Journal of Operational Research, Elsevier, vol. 178(1), pages 185-193, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matsoc:v:64:y:2012:i:1:p:48-56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505565 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.