IDEAS home Printed from https://ideas.repec.org/a/eee/matsoc/v39y2000i2p235-240.html
   My bibliography  Save this article

A generalization of Moulin's Pareto extension theorem

Author

Listed:
  • Weymark, John A.

Abstract

No abstract is available for this item.

Suggested Citation

  • Weymark, John A., 2000. "A generalization of Moulin's Pareto extension theorem," Mathematical Social Sciences, Elsevier, vol. 39(2), pages 235-240, March.
  • Handle: RePEc:eee:matsoc:v:39:y:2000:i:2:p:235-240
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165-4896(99)00006-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duggan, John, 1999. "A General Extension Theorem for Binary Relations," Journal of Economic Theory, Elsevier, vol. 86(1), pages 1-16, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. José Alcantud, 2009. "Conditional ordering extensions," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 39(3), pages 495-503, June.
    2. Peter Caradonna & Christopher P. Chambers, 2024. "Revealed Invariant Preference," Papers 2408.04573, arXiv.org.
    3. Peter Caradonna & Christopher P. Chambers, 2023. "A Note on Invariant Extensions of Preorders," Papers 2303.04522, arXiv.org.
    4. Athanasios Andrikopoulos, 2017. "Generalizations of Szpilrajn's Theorem in economic and game theories," Papers 1708.04711, arXiv.org.
    5. Athanasios Andrikopoulos, 2019. "On the extension of binary relations in economic and game theories," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 277-285, June.
    6. Andrikopoulos, Athanasios, 2009. "Szpilrajn-type theorems in economics," MPRA Paper 14345, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Athanasios Andrikopoulos, 2007. "A representation of consistent binary relations," Spanish Economic Review, Springer;Spanish Economic Association, vol. 9(4), pages 299-307, December.
    2. Franz Dietrich & Christian List, 2013. "Propositionwise judgment aggregation: the general case," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 40(4), pages 1067-1095, April.
    3. Regenwetter, Michel & Marley, A. A. J. & Grofman, Bernard, 2002. "A general concept of majority rule," Mathematical Social Sciences, Elsevier, vol. 43(3), pages 405-428, July.
    4. Athanasios Andrikopoulos, 2011. "Characterization of the existence of semicontinuous weak utilities for binary relations," Theory and Decision, Springer, vol. 70(1), pages 13-26, January.
    5. Thomas Schwartz, 2011. "One-dimensionality and stability in legislative voting," Public Choice, Springer, vol. 148(1), pages 197-214, July.
    6. Eric Danan, 2010. "Randomization vs. Selection: How to Choose in the Absence of Preference?," Management Science, INFORMS, vol. 56(3), pages 503-518, March.
    7. Athanasios Andrikopoulos, 2016. "A characterization of the generalized optimal choice set through the optimization of generalized weak utilities," Theory and Decision, Springer, vol. 80(4), pages 611-621, April.
    8. Quartieri, Federico, 2022. "A unified view of the existence of maximals," Journal of Mathematical Economics, Elsevier, vol. 99(C).
    9. Uyanik, Metin & Khan, M. Ali, 2022. "The continuity postulate in economic theory: A deconstruction and an integration," Journal of Mathematical Economics, Elsevier, vol. 101(C).
    10. Mikhail Freer & César Martinelli, 2023. "An algebraic approach to revealed preference," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 75(3), pages 717-742, April.
    11. Bossert, Walter & Sprumont, Yves & Suzumura, Kotaro, 2002. "Upper semicontinuous extensions of binary relations," Journal of Mathematical Economics, Elsevier, vol. 37(3), pages 231-246, May.
    12. Kaminski, B., 2007. "On quasi-orderings and multi-objective functions," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1591-1598, March.
    13. Mikhail Freer & Cesar Martinelli, 2018. "A Functional Approach to Revealed Preference," Working Papers 1070, George Mason University, Interdisciplinary Center for Economic Science.
    14. Ennio Bilancini, 2011. "On the rationalizability of observed consumers’ choices when preferences depend on budget sets and (potentially) on anything else," Journal of Economics, Springer, vol. 102(3), pages 275-286, April.
    15. Mikhail Freer & Cesar Martinelli, 2018. "A Functional Approach to Revealed Preference," Working Papers 1070, George Mason University, Interdisciplinary Center for Economic Science.
    16. John Duggan, 2013. "Uncovered sets," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 41(3), pages 489-535, September.
    17. Pivato, Marcus, 2010. "Approximate interpersonal comparisons of well-being," MPRA Paper 25224, University Library of Munich, Germany.
    18. Freer, Mikhail & Martinelli, César, 2021. "A utility representation theorem for general revealed preference," Mathematical Social Sciences, Elsevier, vol. 111(C), pages 68-76.
    19. Knoblauch, Vicki, 2013. "A simple voting scheme generates all binary relations on finite sets," Journal of Mathematical Economics, Elsevier, vol. 49(3), pages 230-233.
    20. Andrikopoulos, Athanasios, 2009. "Szpilrajn-type theorems in economics," MPRA Paper 14345, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matsoc:v:39:y:2000:i:2:p:235-240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505565 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.