IDEAS home Printed from https://ideas.repec.org/a/eee/mateco/v98y2022ics0304406821001178.html
   My bibliography  Save this article

Optimal transition to greener production in a pro-environmental society

Author

Listed:
  • Orlov, Sergey
  • Rovenskaya, Elena

Abstract

Achieving sustainable development requires a transition from the current production fashion that leads to the environmental degradation to a cleaner production. Such a substitution can be costly if the new technology is less productive. In this paper, we present a two-sector endogenous growth model that analyzes the potential of a transition from a more productive brown sector to a less productive green sector. The representative agent maximizes the weighted sum of the present value of the utility of consumption and the amenity value of green production. We derive a closed-form optimal solution using a suitable version of the Pontryagin Maximum Principle. For an economy, in which the brown sector dominates initially, we obtain that as long as the preference towards green production is positive, the optimal solution always has a single switching point and the following structure. Initially, the representative agent distributes the output between investment in the green sector and consumption, making no investment in the brown sector. This allows attaining a particular critical ratio between green and brown capital stocks in the fastest way. Once this ratio has been reached, the optimal solution switches to that, which allows both capitals to grow at the same rate. The representative agent has to sacrifice his/her consumption to invest in the green sector, especially in the initial period, which is due to the amenity that this sector provides. Under constant productivities, a full substitution of brown production by green production is not possible; rather, they co-exist and evolve proportionally. Three parameters are positively related to the ratio of the green capital stock: the social discount rate, the (augmented) productivity of the green capital, and a representative agent’s preference towards the green production amenity.

Suggested Citation

  • Orlov, Sergey & Rovenskaya, Elena, 2022. "Optimal transition to greener production in a pro-environmental society," Journal of Mathematical Economics, Elsevier, vol. 98(C).
  • Handle: RePEc:eee:mateco:v:98:y:2022:i:c:s0304406821001178
    DOI: 10.1016/j.jmateco.2021.102554
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304406821001178
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmateco.2021.102554?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Raouf Boucekkine & Aude Pommeret & Fabien Prieur, 2013. "Technological vs. Ecological Switch and the Environmental Kuznets Curve," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(2), pages 252-260.
    2. Boucekkine, R. & Pommeret, A. & Prieur, F., 2013. "Optimal regime switching and threshold effects," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2979-2997.
    3. Ayong Le Kama, Alain D., 2001. "Sustainable growth, renewable resources and pollution," Journal of Economic Dynamics and Control, Elsevier, vol. 25(12), pages 1911-1918, December.
    4. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    5. Daron Acemoglu & Ufuk Akcigit & Douglas Hanley & William Kerr, 2016. "Transition to Clean Technology," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 52-104.
    6. Jesús Crespo Cuaresma & Tapio Palokangas & Alexander Tarasyev (ed.), 2010. "Dynamic Systems, Economic Growth, and the Environment," Dynamic Modeling and Econometrics in Economics and Finance, Springer, number 978-3-642-02132-9, May.
    7. Wirl, Franz, 2004. "Sustainable growth, renewable resources and pollution: Thresholds and cycles," Journal of Economic Dynamics and Control, Elsevier, vol. 28(6), pages 1149-1157, March.
    8. Sjak Smulders, "undated". "Environmental Policy and Sustainable Economic Growth - an endogenous growth perspective," EPRU Working Paper Series 95-07, Economic Policy Research Unit (EPRU), University of Copenhagen. Department of Economics.
    9. Jesús Crespo Cuaresma & Tapio Palokangas & Alexander Tarasyev (ed.), 2013. "Green Growth and Sustainable Development," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-642-34354-4, May.
    10. Elke Moser & Alexia Prskawetz & Gernot Tragler, 2013. "Environmental Regulations, Abatement and Economic Growth," Dynamic Modeling and Econometrics in Economics and Finance, in: Jesús Crespo Cuaresma & Tapio Palokangas & Alexander Tarasyev (ed.), Green Growth and Sustainable Development, edition 127, pages 87-111, Springer.
    11. Ellen R. McGrattan, 1998. "A defense of AK growth models," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 22(Fall), pages 13-27.
    12. Jeffrey A. Krautkraemer, 1985. "Optimal Growth, Resource Amenities and the Preservation of Natural Environments," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 52(1), pages 153-169.
    13. Raouf Boucekkine & Aude Pommeret & Fabien Prieur, 2013. "Technological vs. Ecological Switch and the Environmental Kuznets Curve," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(2), pages 252-260.
    14. Costanza, Robert & de Groot, Rudolf & Braat, Leon & Kubiszewski, Ida & Fioramonti, Lorenzo & Sutton, Paul & Farber, Steve & Grasso, Monica, 2017. "Twenty years of ecosystem services: How far have we come and how far do we still need to go?," Ecosystem Services, Elsevier, vol. 28(PA), pages 1-16.
    15. Gilles Lafforgue, 2005. "Uncertainty and Amenity Values in Renewable Resource Economics," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 31(3), pages 369-383, July.
    16. Martin L. Weitzman, 2012. "GHG Targets as Insurance Against Catastrophic Climate Damages," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 14(2), pages 221-244, March.
    17. Marzio Galeotti, 2007. "Economic Growth And The Quality Of The Environment: Taking Stock," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 9(4), pages 427-454, November.
    18. Lucas Bretschger & Aimilia Pattakou, 2019. "Correction to: As Bad as it Gets: How Climate Damage Functions Affect Growth and the Social Cost of Carbon," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(1), pages 27-27, January.
    19. Gerlagh, Reyer & Keyzer, Michiel A., 2004. "Path-dependence in a Ramsey model with resource amenities and limited regeneration," Journal of Economic Dynamics and Control, Elsevier, vol. 28(6), pages 1159-1184, March.
    20. Lucas Bretschger & Aimilia Pattakou, 2019. "As Bad as it Gets: How Climate Damage Functions Affect Growth and the Social Cost of Carbon," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(1), pages 5-26, January.
    21. Maria A Cunha-e-Sa & Alexandra Leitao & Ana Balcao Reis, 2010. "Innovation and environmental policy: clean vs. dirty technical change," Nova SBE Working Paper Series wp548, Universidade Nova de Lisboa, Nova School of Business and Economics.
    22. Chung-Huang Huang & Deqin Cai, 1994. "Constant-returns endogenous growth with pollution control," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 4(4), pages 383-400, August.
    23. Seierstad, Atle & Sydsaeter, Knut, 1977. "Sufficient Conditions in Optimal Control Theory," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 367-391, June.
    24. Lans Bovenberg, A. & Smulders, Sjak, 1995. "Environmental quality and pollution-augmenting technological change in a two-sector endogenous growth model," Journal of Public Economics, Elsevier, vol. 57(3), pages 369-391, July.
    25. Elena Rovenskaya, 2010. "Optimal Economic Growth Under Stochastic Environmental Impact: Sensitivity Analysis," Dynamic Modeling and Econometrics in Economics and Finance, in: Jesús Crespo Cuaresma & Tapio Palokangas & Alexander Tarasyev (ed.), Dynamic Systems, Economic Growth, and the Environment, pages 79-107, Springer.
    26. Raymond Gradus & Sjak Smulders, 1993. "The trade-off between environmental care and long-term growth—Pollution in three prototype growth models," Journal of Economics, Springer, vol. 58(1), pages 25-51, February.
    27. Horowitz, John K., 1996. "Environmental policy under a non-market discount rate," Ecological Economics, Elsevier, vol. 16(1), pages 73-78, January.
    28. United Nations UN, 2015. "Transforming our World: the 2030 Agenda for Sustainable Development," Working Papers id:7559, eSocialSciences.
    29. Cassou, Steven P. & Hamilton, Stephen F., 2004. "The transition from dirty to clean industries: optimal fiscal policy and the environmental Kuznets curve," Journal of Environmental Economics and Management, Elsevier, vol. 48(3), pages 1050-1077, November.
    30. Helmut Maurer & Johann Jakob Preuß & Willi Semmler, 2013. "Optimal Control of Growth and Climate Change—Exploration of Scenarios," Dynamic Modeling and Econometrics in Economics and Finance, in: Jesús Crespo Cuaresma & Tapio Palokangas & Alexander Tarasyev (ed.), Green Growth and Sustainable Development, edition 127, pages 113-139, Springer.
    31. Rauscher, Michael, 2009. "Green R&D versus end-of-pipe emission abatement: A model of directed technical change," Thuenen-Series of Applied Economic Theory 106, University of Rostock, Institute of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Augeraud-Veron, Emmanuelle & Boucekkine, Raouf & Gozzi, Fausto & Venditti, Alain & Zou, Benteng, 2024. "Fifty years of mathematical growth theory: Classical topics and new trends," Journal of Mathematical Economics, Elsevier, vol. 111(C).
    2. Jingcheng Li & Menggang Li & Tianyang Wang & Xiuqin Feng, 2023. "Analysis of the Low-Carbon Transition Effect and Development Pattern of Green Credit for Prefecture-Level Cities in the Yellow River Basin," IJERPH, MDPI, vol. 20(5), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elke Moser & Andrea Seidl & Gustav Feichtinger, 2014. "History-dependence in production-pollution-trade-off models: a multi-stage approach," Annals of Operations Research, Springer, vol. 222(1), pages 457-481, November.
    2. Bondarev, Anton & Greiner, Alfred, 2020. "Global warming and technical change: Multiple steady-states and policy options," China Economic Review, Elsevier, vol. 62(C).
    3. Xepapadeas, Anastasios, 2005. "Economic growth and the environment," Handbook of Environmental Economics, in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 3, chapter 23, pages 1219-1271, Elsevier.
    4. Sjak Smulders, 1995. "Entropy, environment, and endogenous economic growth," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 2(2), pages 319-340, August.
    5. Smulders, Sjak & Gradus, Raymond, 1996. "Pollution abatement and long-term growth," European Journal of Political Economy, Elsevier, vol. 12(3), pages 505-532, November.
    6. Alberto Ansuategi & Simone Marsiglio, 2017. "Is Environmental Protection Beneficial for the Environment?," Review of Development Economics, Wiley Blackwell, vol. 21(3), pages 786-802, August.
    7. Naqvi, Asjad & Stockhammer, Engelbert, 2018. "Directed Technological Change in a Post-Keynesian Ecological Macromodel," Ecological Economics, Elsevier, vol. 154(C), pages 168-188.
    8. Shieh, Jhy-yuan & Chen, Jhy-hwa & Chang, Shu-hua & Lai, Ching-chong, 2014. "Environmental consciousness, economic growth, and macroeconomic instability," International Review of Economics & Finance, Elsevier, vol. 34(C), pages 151-160.
    9. Manash Ranjan Gupta & Priya Brata Dutta, 2022. "Taxation, capital accumulation, environment and unemployment in an efficiency wage model," Journal of Economics, Springer, vol. 135(2), pages 151-198, March.
    10. Gerlagh, Reyer, 2023. "Climate, technology, family size; on the crossroad between two ultimate externalities," European Economic Review, Elsevier, vol. 152(C).
    11. Evangelos V. Dioikitopoulos & Sugata Ghosh & Eugenia Vella, 2016. "Technological Progress, Time Perception and Environmental Sustainability," Working Papers 2016002, The University of Sheffield, Department of Economics.
    12. Susanne Soretz, 2007. "Efficient Dynamic Pollution Taxation in an Uncertain Environment," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 36(1), pages 57-84, January.
    13. Suyu Huang & Hanlian Lin & Yongjunbei Zhou & Haonan Ji & Naiping Zhu, 2022. "The Influence of the Policy of Replacing Environmental Protection Fees with Taxes on Enterprise Green Innovation—Evidence from China’s Heavily Polluting Industries," Sustainability, MDPI, vol. 14(11), pages 1-23, June.
    14. Dao, Nguyen Thang & Edenhofer, Ottmar, 2018. "On the fiscal strategies of escaping poverty-environment traps towards sustainable growth," Journal of Macroeconomics, Elsevier, vol. 55(C), pages 253-273.
    15. Ricci, Francesco, 2007. "Channels of transmission of environmental policy to economic growth: A survey of the theory," Ecological Economics, Elsevier, vol. 60(4), pages 688-699, February.
    16. Ngo Van Long & Fabien Prieur & Klarizze Puzon & Mabel Tidball, 2013. "Markov Perfect Equilibria in Differential Games with Regime Switching Strategies," Working Papers 13-06, LAMETA, Universtiy of Montpellier, revised Jan 2014.
    17. Lazkano, Itziar & Nøstbakken, Linda & Pelli, Martino, 2017. "From fossil fuels to renewables: The role of electricity storage," European Economic Review, Elsevier, vol. 99(C), pages 113-129.
    18. Oueslati, Walid, 2013. "Short and Long-term Effects of Environmental Tax Reform," Climate Change and Sustainable Development 146354, Fondazione Eni Enrico Mattei (FEEM).
    19. Robinson, James A. & Srinivasan, T.N., 1993. "Long-term consequences of population growth: Technological change, natural resources, and the environment," Handbook of Population and Family Economics, in: M. R. Rosenzweig & Stark, O. (ed.), Handbook of Population and Family Economics, edition 1, volume 1, chapter 21, pages 1175-1298, Elsevier.
    20. Lazkano, Itziar & Pham, Linh, 2016. "Do Fossil fuel Taxes Promote Innovation in Renewable Electricity Generation?," Discussion Paper Series in Economics 16/2016, Norwegian School of Economics, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:98:y:2022:i:c:s0304406821001178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jmateco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.