IDEAS home Printed from https://ideas.repec.org/a/eee/mateco/v46y2010i3p279-292.html
   My bibliography  Save this article

Equivalence of utilitarian maximal and weakly maximal programs

Author

Listed:
  • Banerjee, Kuntal
  • Mitra, Tapan

Abstract

For a class of aggregative optimal growth models, which allow for a non-convex and non-differentiable production technology, this paper examines whether the set of utilitarian maximal programs coincides with the set of weakly maximal programs. It identifies a condition, called the Phelps-Koopmans condition, under which the equivalence result holds. An example is provided to demonstrate that the equivalence result is invalid when the Phelps-Koopmans condition does not hold.

Suggested Citation

  • Banerjee, Kuntal & Mitra, Tapan, 2010. "Equivalence of utilitarian maximal and weakly maximal programs," Journal of Mathematical Economics, Elsevier, vol. 46(3), pages 279-292, May.
  • Handle: RePEc:eee:mateco:v:46:y:2010:i:3:p:279-292
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4068(09)00136-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. David Gale, 1967. "On Optimal Development in a Multi-Sector Economy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 34(1), pages 1-18.
    2. Geir Asheim & Bertil Tungodden, 2004. "Resolving distributional conflicts between generations," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 24(1), pages 221-230, July.
    3. W. A. Brock, 1970. "On Existence of Weakly Maximal Programmes in a Multi-Sector Economy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 37(2), pages 275-280.
    4. Majumdar, Mukul & Mitra, Tapan, 1982. "Intertemporal allocation with a non-convex technology: The aggregative framework," Journal of Economic Theory, Elsevier, vol. 27(1), pages 101-136, June.
    5. Mukul Majumdar & Tapan Mitra, 1983. "Dynamic Optimization with a Non-Convex Technology: The Case of a Linear Objective Function," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 50(1), pages 143-151.
    6. Hiroshi Atsumi, 1965. "Neoclassical Growth and the Efficient Program of Capital Accumulation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 32(2), pages 127-136.
    7. Basu, Kaushik & Mitra, Tapan, 2007. "Utilitarianism for infinite utility streams: A new welfare criterion and its axiomatic characterization," Journal of Economic Theory, Elsevier, vol. 133(1), pages 350-373, March.
    8. Roy Radner, 1961. "Prices and the Turnpike: III. Paths of Economic Growth that are Optimal with Regard only to Final States: A Turnpike Theorem," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 28(2), pages 98-104.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Augeraud-Veron, Emmanuelle & Boucekkine, Raouf & Gozzi, Fausto & Venditti, Alain & Zou, Benteng, 2024. "Fifty years of mathematical growth theory: Classical topics and new trends," Journal of Mathematical Economics, Elsevier, vol. 111(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ram Dubey & Tapan Mitra, 2013. "On the nature of Suppes–Sen maximal paths in an aggregative growth model," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 40(1), pages 173-205, January.
    2. Banerjee, Kuntal, 2017. "Suppes–Sen maximality of cyclical consumption: The neoclassical growth model," Journal of Mathematical Economics, Elsevier, vol. 70(C), pages 51-65.
    3. Dubey, Ram Sewak & Mitra, Tapan, 2010. "On the Nature of Suppes-Sen Choice Functions in an Aggregative Growth Model," Working Papers 10-06, Cornell University, Center for Analytic Economics.
    4. Basu, Kaushik & Mitra, Tapan, 2007. "Utilitarianism for infinite utility streams: A new welfare criterion and its axiomatic characterization," Journal of Economic Theory, Elsevier, vol. 133(1), pages 350-373, March.
    5. Adam Jonsson, 2023. "An axiomatic approach to Markov decision processes," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 97(1), pages 117-133, February.
    6. Truman Bewley, 2010. "An Integration of Equilibrium Theory and Turnpike Theory," Levine's Working Paper Archive 1381, David K. Levine.
    7. Mitra, Tapan, 2004. "Intergenerational Equity and the Forest Management Problem," Working Papers 04-17, Cornell University, Center for Analytic Economics.
    8. Alain Ayong Le Kama & Thai Ha-Huy & Cuong Le Van & Katheline Schubert, 2014. "A never-decisive and anonymous criterion for optimal growth models," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 55(2), pages 281-306, February.
    9. Khan, M. Ali & Zaslavski, Alexander J., 2009. "On existence of optimal programs: The RSS model without concavity assumptions on felicities," Journal of Mathematical Economics, Elsevier, vol. 45(9-10), pages 624-633, September.
    10. M. Khan & Alexander Zaslavski, 2007. "On a Uniform Turnpike of the Third Kind in the Robinson-Solow-Srinivasan Model," Journal of Economics, Springer, vol. 92(2), pages 137-166, October.
    11. repec:ipg:wpaper:2013-002 is not listed on IDEAS
    12. Vassili Kolokoltsov & Wei Yang, 2012. "Turnpike Theorems for Markov Games," Dynamic Games and Applications, Springer, vol. 2(3), pages 294-312, September.
    13. Asheim, Geir B. & d'Aspremont, Claude & Banerjee, Kuntal, 2010. "Generalized time-invariant overtaking," Journal of Mathematical Economics, Elsevier, vol. 46(4), pages 519-533, July.
    14. Ali Khan, M. & Piazza, Adriana, 2012. "On the Mitra–Wan forestry model: A unified analysis," Journal of Economic Theory, Elsevier, vol. 147(1), pages 230-260.
    15. Ali Khan, M. & Mitra, Tapan, 2008. "Growth in the Robinson-Solow-Srinivasan model: Undiscounted optimal policy with a strictly concave welfare function," Journal of Mathematical Economics, Elsevier, vol. 44(7-8), pages 707-732, July.
    16. M. Ali Khan & Tapan Mitra, 2005. "On choice of technique in the Robinson–Solow–Srinivasan model," International Journal of Economic Theory, The International Society for Economic Theory, vol. 1(2), pages 83-110, June.
    17. Alvarez-Cuadrado, Francisco & Van Long, Ngo, 2009. "A mixed Bentham-Rawls criterion for intergenerational equity: Theory and implications," Journal of Environmental Economics and Management, Elsevier, vol. 58(2), pages 154-168, September.
    18. Jensen, Martin Kaae, 2012. "Global stability and the “turnpike” in optimal unbounded growth models," Journal of Economic Theory, Elsevier, vol. 147(2), pages 802-832.
    19. Geir B. Asheim & Kuntal Banerjee, 2010. "Fixed‐step anonymous overtaking and catching‐up," International Journal of Economic Theory, The International Society for Economic Theory, vol. 6(1), pages 149-165, March.
    20. Dapeng CAI & Takashi Gyoshin NITTA, 2008. "Limit of the Solutions for the Finite Horizon Problems as the Optimal Solution to the Infinite Horizon Optimization Problems," Papers 0803.4050, arXiv.org.
    21. Michele Lombardi & Kaname Miyagishima & Roberto Veneziani, 2016. "Liberal Egalitarianism and the Harm Principle," Economic Journal, Royal Economic Society, vol. 126(597), pages 2173-2196, November.

    More about this item

    Keywords

    Utilitarian maximal Weakly maximal Phelps-Koopmans condition Aggregative growth models;

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • D90 - Microeconomics - - Micro-Based Behavioral Economics - - - General
    • E10 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - General
    • O41 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - One, Two, and Multisector Growth Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:46:y:2010:i:3:p:279-292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jmateco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.