Order isomorphisms for preferences with intransitive indifference
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Chateauneuf, Alain, 1987. "Continuous representation of a preference relation on a connected topological space," Journal of Mathematical Economics, Elsevier, vol. 16(2), pages 139-146, April.
- Peleg, Bezalel, 1970. "Utility Functions for Partially Ordered Topological Spaces," Econometrica, Econometric Society, vol. 38(1), pages 93-96, January.
- Shafer, Wayne J, 1974. "The Nontransitive Consumer," Econometrica, Econometric Society, vol. 42(5), pages 913-919, September.
- Peris, Josep E. & Subiza, Begona, 1995. "A weak utility function for acyclic preferences," Economics Letters, Elsevier, vol. 48(1), pages 21-24, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- M. Ali Khan & Metin Uyanık, 2021.
"Topological connectedness and behavioral assumptions on preferences: a two-way relationship,"
Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(2), pages 411-460, March.
- M. Ali Khan & Metin Uyan{i}k, 2018. "Topological Connectedness and Behavioral Assumptions on Preferences: A Two-Way Relationship," Papers 1810.02004, arXiv.org, revised Oct 2018.
- Peris, Josep E. & Subiza, Begona, 1995. "A weak utility function for acyclic preferences," Economics Letters, Elsevier, vol. 48(1), pages 21-24, April.
- Subiza, Begona & Peris, Josep E., 1997.
"Numerical representation for lower quasi-continuous preferences,"
Mathematical Social Sciences, Elsevier, vol. 33(2), pages 149-156, April.
- Josep Enric Peris Ferrando & Begoña Subiza Martínez, 1996. "Numerical representation for lower quasi-continuous preferences," Working Papers. Serie AD 1996-08, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
- Peris J. E. & Subiza, B., 1996.
"Demand correspondence for pseudotransitive preferences,"
Mathematical Social Sciences, Elsevier, vol. 31(1), pages 61-61, February.
- Peris, Josep E. & Subiza, Begona, 1995. "Demand correspondence for pseudo-transitive preferences," Mathematical Social Sciences, Elsevier, vol. 30(3), pages 307-318, December.
- Estévez Toranzo, Margarita & García Cutrín, Javier & Hervés Beloso,Carlos & López López, Miguel A., 1993. "A note on representation of references," UC3M Working papers. Economics 2905, Universidad Carlos III de Madrid. Departamento de EconomÃa.
- Bosi, Gianni & Zuanon, Magalì, 2014. "Upper semicontinuous representations of interval orders," Mathematical Social Sciences, Elsevier, vol. 68(C), pages 60-63.
- Athanasios Andrikopoulos, 2011. "Characterization of the existence of semicontinuous weak utilities for binary relations," Theory and Decision, Springer, vol. 70(1), pages 13-26, January.
- J.C.R. Alcantud, 1999. "Weak utilities from acyclicity," Theory and Decision, Springer, vol. 47(2), pages 185-196, October.
- Athanasios Andrikopoulos, 2016. "A characterization of the generalized optimal choice set through the optimization of generalized weak utilities," Theory and Decision, Springer, vol. 80(4), pages 611-621, April.
- Salonen, Hannu & Vartiainen, Hannu, 2010.
"On the existence of undominated elements of acyclic relations,"
Mathematical Social Sciences, Elsevier, vol. 60(3), pages 217-221, November.
- Hannu Salonen & Hannu Vartiainen, 2005. "On the Existence of Undominated Elements of Acyclic Relations," Game Theory and Information 0503009, University Library of Munich, Germany.
- Uyanik, Metin & Khan, M. Ali, 2022.
"The continuity postulate in economic theory: A deconstruction and an integration,"
Journal of Mathematical Economics, Elsevier, vol. 101(C).
- Metin Uyanik & M. Ali Khan, 2021. "The Continuity Postulate in Economic Theory: A Deconstruction and an Integration," Papers 2108.11736, arXiv.org, revised Jan 2022.
- Gerasímou, Georgios, 2010.
"Consumer theory with bounded rational preferences,"
Journal of Mathematical Economics, Elsevier, vol. 46(5), pages 708-714, September.
- Gerasimou, Georgios, 2009. "Consumer theory with bounded rational preferences," MPRA Paper 18673, University Library of Munich, Germany, revised 16 Nov 2009.
- Estévez Toranzo, Margarita & Hervés Beloso, Carlos & López López, Miguel A., 1993. "Una nota sobre la representación numérica de relaciones de preferencia," DES - Documentos de Trabajo. EstadÃstica y EconometrÃa. DS 2941, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Begoña Subiza Martínez, 1993. "Numerical Representation Of Acyclic Preferences," Working Papers. Serie AD 1993-09, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
- S. Larsson & G. R. Chesley, 1986. "An analysis of the auditor's uncertainty about probabilities," Contemporary Accounting Research, John Wiley & Sons, vol. 2(2), pages 259-282, March.
- Gilboa, Itzhak & Lapson, Robert, 1995.
"Aggregation of Semiorders: Intransitive Indifference Makes a Difference,"
Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 5(1), pages 109-126, January.
- Itzhak Gilboa & Robert Lapson, 1990. "Aggregation of Semiorders: Intransitive Indifference Makes a Difference," Discussion Papers 870, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
- Itzhak Gilboa & Robert Lapson, 1995. "Aggregation of Semi-Orders: Intransitive Indifference Makes a Difference," Post-Print hal-00753141, HAL.
- Bosi, G. & Mehta, G. B., 2002. "Existence of a semicontinuous or continuous utility function: a unified approach and an elementary proof," Journal of Mathematical Economics, Elsevier, vol. 38(3), pages 311-328, November.
- Bosi, Gianni & Herden, Gerhard, 2012. "Continuous multi-utility representations of preorders," Journal of Mathematical Economics, Elsevier, vol. 48(4), pages 212-218.
- Wilfried Youmbi, 2024. "Nonparametric Analysis of Random Utility Models Robust to Nontransitive Preferences," Papers 2406.13969, arXiv.org.
- McKenzie, Lionel W, 1981.
"The Classical Theorem on Existence of Competitive Equilibrium,"
Econometrica, Econometric Society, vol. 49(4), pages 819-841, June.
- L. W. McKenzie, 2010. "The Classical Theorem on Existence of Competitive Equilibrium," Levine's Working Paper Archive 1388, David K. Levine.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:30:y:1998:i:4:p:421-431. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jmateco .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.