IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v82y2012i5p847-857.html
   My bibliography  Save this article

Variable high-gain disturbance observer design with online adaption of observer gains embedded in numerical integration

Author

Listed:
  • Liu, Yan
  • Söffker, Dirk

Abstract

In this paper, a variable gain design approach for the high-gain disturbance observer, called Proportional-Integral-Observer (PI-Observer), is proposed to solve the problem of choosing suitable observer gains. The high-gain PI-Observer is successfully applied to estimate unknown inputs of systems together with the system states. It is known that reasonable estimations of unknown inputs can only be derived using high observer gains. On the other hand, extremely large gains will cause serious problems with respect to measurements noise and unmodeled dynamics. According to the analysis of the estimation quality regarding to the factors which influence the estimation results, the optimal level of observer gains is changing during the estimation, an online adaption for the observer gains is therefore developed. The designed PI-Observer, called Advanced PI-Observer (API-Observer), will use changing observer gains from the adaption algorithm, which is proved to give stable estimation error dynamics. Simulation results from an elastic beam example are shown to illustrate the implementation of the API-Observer.

Suggested Citation

  • Liu, Yan & Söffker, Dirk, 2012. "Variable high-gain disturbance observer design with online adaption of observer gains embedded in numerical integration," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(5), pages 847-857.
  • Handle: RePEc:eee:matcom:v:82:y:2012:i:5:p:847-857
    DOI: 10.1016/j.matcom.2011.07.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037847541200002X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2011.07.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Njiri, Jackson G. & Söffker, Dirk, 2016. "State-of-the-art in wind turbine control: Trends and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 377-393.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:82:y:2012:i:5:p:847-857. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.