IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v81y2011i7p1419-1429.html
   My bibliography  Save this article

An assessment of modelling capacity to identify the impacts of climate variability on catchment hydrology

Author

Listed:
  • Kim, H.S.
  • Croke, B.F.W.
  • Jakeman, A.J.
  • Chiew, F.H.S.

Abstract

The aim is to investigate the consistency or variability of catchment response over time and space and evaluate the predictive error caused by the impacts of climate variability on streamflow. For this purpose, both data- and top-down model-based analyses of the dynamic relation between rainfall and runoff for selected sub-catchments have been undertaken. Data analysis techniques (e.g. trend analysis, deconvolution and baseflow filtering) were used to assess the temporal and spatial variation in the hydrologic response characteristics for each site. The lumped conceptual rainfall–runoff model IHACRES CMD (Catchment Moisture Deficit) version is applied to the sub-catchments to assess the adequacy of the model response in representing the impact of weather patterns on streamflow. Several performance criteria have been used to evaluate the performance of the model in each calibration period using a multi-criteria approach. The IHACRES-3S (3 Storage) model is applied to assess low flow behaviour and capture the timing in the switch between baseflow and no flow periods. Rainfall–runoff model performance characteristics of each sub-catchment are quite related to their incident rainfall regime. Sub-catchments which are located in a lower rainfall regime show poor to average model performance. The reduction in performance in R2 is due to the poor fitting to the peaks for both large and small streamflow events, with the model underestimating the highest flow peaks, and overestimating smaller peaks. Further work will be needed to assess observed data reliability and improve model performance in order to separate the impacts of climate variations and land use change on hydrological response. An appropriate model structure having a variable partitioning between quick and slow flow components is under consideration and techniques are being used to identify problematic periods and events with high error in the observational data.

Suggested Citation

  • Kim, H.S. & Croke, B.F.W. & Jakeman, A.J. & Chiew, F.H.S., 2011. "An assessment of modelling capacity to identify the impacts of climate variability on catchment hydrology," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(7), pages 1419-1429.
  • Handle: RePEc:eee:matcom:v:81:y:2011:i:7:p:1419-1429
    DOI: 10.1016/j.matcom.2010.05.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475410001564
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2010.05.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. H. Kim, 2014. "Adequacy of a Multi-objective Regional Calibration Method Incorporating a Sequential Regionalisation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5507-5526, December.
    2. H. S. Kim, 2016. "Potential Improvement of the Parameter Identifiability in Ungauged Catchments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 3207-3228, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:81:y:2011:i:7:p:1419-1429. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.