Author
Listed:
- Jean-Baptiste, Nelly
- Malaterre, Pierre-Olivier
- Dorée, Christophe
- Sau, Jacques
Abstract
Water management, in a variety of contexts and objectives, is a very important issue gaining increasing attention worldwide. In some places and during some periods, this is due to the scarcity of the water resource, and increasing competition for its use. In some others, it can be risk reduction due to flood events, or optimization of hydropower production along rivers. Hydraulic modeling, system analysis and automatic control are now parts of most water management projects. In order to operate hydraulic devices on irrigation canals or rivers, detailed information on the hydraulic state of the system must be available. This is particularly true when the control algorithms are based on Linear Quadratic Gaussian or Predictive Control approaches, using full state space models. Usually, the only known quantities are water levels, measured at limited locations. Sometimes, the discharge is known at specific locations (cross devices with gates, weirs, or hydropower turbines). The design of an observer is a very useful tool for reconstructing unmeasured data, such as discharges or water levels at other locations, unknown perturbations, such as inflows or outflows, and model parameters such as Manning–Strickler or hydraulic device discharge coefficients. Several approaches are able to provide such observers. The paper illustrates and compares the use of sequential Kalman Filter and sequential Particle Filter State Observer on these water management problems. Four scenarios have been selected to test the filters, based on twin experiences or using real field data. Both approaches proved to be efficient and robust. The Kalman Filter is very fast in terms of calculation time and convergence. The Particle Filter can handle the non-linear features of the model.
Suggested Citation
Jean-Baptiste, Nelly & Malaterre, Pierre-Olivier & Dorée, Christophe & Sau, Jacques, 2011.
"Data assimilation for real-time estimation of hydraulic states and unmeasured perturbations in a 1D hydrodynamic model,"
Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(10), pages 2201-2214.
Handle:
RePEc:eee:matcom:v:81:y:2011:i:10:p:2201-2214
DOI: 10.1016/j.matcom.2010.12.021
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:81:y:2011:i:10:p:2201-2214. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.