IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v81y2011i10p1936-1948.html
   My bibliography  Save this article

Computing quasi-interpolants from the B-form of B-splines

Author

Listed:
  • Abbadi, A.
  • Ibáñez, M.J.
  • Sbibih, D.

Abstract

In general, for a sufficiently regular function, an expression for the quasi-interpolation error associated with discrete, differential and integral quasi-interpolants can be derived involving a term measuring how well the non-reproduced monomials are approximated. That term depends on some expressions of the coefficients defining the quasi-interpolant, and its minimization has been proposed. However, the resulting problem is rather complex and often requires some computational effort. Thus, for quasi-interpolants defined from a piecewise polynomial function, φ, we propose a simpler minimization problem, based on the Bernstein–Bézier representation of some related piecewise polynomial functions, leading to a new class of quasi-interpolants.

Suggested Citation

  • Abbadi, A. & Ibáñez, M.J. & Sbibih, D., 2011. "Computing quasi-interpolants from the B-form of B-splines," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(10), pages 1936-1948.
  • Handle: RePEc:eee:matcom:v:81:y:2011:i:10:p:1936-1948
    DOI: 10.1016/j.matcom.2010.12.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475410004064
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2010.12.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fortes, M.A. & Ibáñez, M.J. & Rodríguez, M.L., 2009. "On Chebyshev-type integral quasi-interpolation operators," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(12), pages 3478-3491.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boujraf, A. & Tahrichi, M. & Tijini, A., 2015. "C1 Superconvergent quasi-interpolation based on polar forms," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 118(C), pages 102-115.
    2. Sbibih, D. & Serghini, A. & Tijini, A., 2015. "Superconvergent local quasi-interpolants based on special multivariate quadratic spline space over a refined quadrangulation," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 145-156.
    3. Allouch, C. & Boujraf, A. & Tahrichi, M., 2017. "Superconvergent spline quasi-interpolants and an application to numerical integration," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 137(C), pages 90-108.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sbibih, D. & Serghini, A. & Tijini, A., 2015. "Superconvergent local quasi-interpolants based on special multivariate quadratic spline space over a refined quadrangulation," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 145-156.
    2. Allouch, C. & Boujraf, A. & Tahrichi, M., 2017. "Superconvergent spline quasi-interpolants and an application to numerical integration," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 137(C), pages 90-108.
    3. Gao, Wenwu & Zhang, Xia & Zhou, Xuan, 2020. "Multiquadric quasi-interpolation for integral functionals," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 316-328.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:81:y:2011:i:10:p:1936-1948. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.