IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v81y2010i3p731-741.html
   My bibliography  Save this article

An efficient method for the solution of the inverse scattering problem for penetrable obstacles

Author

Listed:
  • Egidi, N.
  • Maponi, P.

Abstract

We consider a two-dimensional scattering problem for inhomogeneous media. This problem arises from the study of time-harmonic electromagnetic scattering problems for Transverse Magnetic (TM) waves. In the direct scattering problem we have to compute the scattered wave from the knowledge of the incident wave and of the inhomogeneity. In the inverse scattering problem we have to reconstruct the refractive index of the inhomogeneity from some knowledge of the scattered waves generated by the inhomogeneity itself with known incident waves.

Suggested Citation

  • Egidi, N. & Maponi, P., 2010. "An efficient method for the solution of the inverse scattering problem for penetrable obstacles," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(3), pages 731-741.
  • Handle: RePEc:eee:matcom:v:81:y:2010:i:3:p:731-741
    DOI: 10.1016/j.matcom.2010.09.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475410003046
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2010.09.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:81:y:2010:i:3:p:731-741. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.