IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v81y2010i2p433-445.html
   My bibliography  Save this article

Flicker mitigation in a doubly fed induction generator wind turbine system

Author

Listed:
  • Machmoum, Mohamed
  • Hatoum, Ahmad
  • Bouaouiche, Toufik

Abstract

This paper describes a doubly fed induction generator (DFIG) control for wind energy generation. The DFIG model is established and the adopted control strategies for machine side and grid side converters are described. Flicker phenomenon is defined and its emission of variable speed wind turbine with DFIG during continuous operation is studied. Calculation of flicker severity is evaluated using flickermeter. Appropriate vector power control of the machine side converter is proposed and applied to achieve flicker mitigation.

Suggested Citation

  • Machmoum, Mohamed & Hatoum, Ahmad & Bouaouiche, Toufik, 2010. "Flicker mitigation in a doubly fed induction generator wind turbine system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(2), pages 433-445.
  • Handle: RePEc:eee:matcom:v:81:y:2010:i:2:p:433-445
    DOI: 10.1016/j.matcom.2010.09.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475410002910
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2010.09.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boutoubat, M. & Mokrani, L. & Machmoum, M., 2013. "Control of a wind energy conversion system equipped by a DFIG for active power generation and power quality improvement," Renewable Energy, Elsevier, vol. 50(C), pages 378-386.
    2. Perera, D. & Meegahapola, L. & Perera, S. & Ciufo, P., 2014. "Characterisation of flicker emission and propagation in distribution networks with bi-directional power flows," Renewable Energy, Elsevier, vol. 63(C), pages 172-180.
    3. Huda, A.S.N. & Živanović, R., 2017. "Large-scale integration of distributed generation into distribution networks: Study objectives, review of models and computational tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 974-988.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:81:y:2010:i:2:p:433-445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.