IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v81y2010i2p394-406.html
   My bibliography  Save this article

Nonlinear predictive controller for a permanent magnet synchronous motor drive

Author

Listed:
  • Errouissi, Rachid
  • Ouhrouche, Mohand

Abstract

A nonlinear predictive controller (NPC) for a permanent magnet synchronous motor (PMSM) is proposed in this paper. Its objective is high performance tracking of the rotor speed trajectory while maintaining the d-axis component of the armature current at zero. The load torque and the mismatched parameters are considered to be unknown perturbations. To ensure robustness against these perturbations, a disturbance observer is designed using a new gain function, and integrated into the control law. The combination of the nonlinear predictive controller and the disturbance observer works as a nonlinear controller. The overall closed-loop system is proved to be globally asymptotically stable depending on the design parameters. The validity of the proposed controller was tested by simulations. Satisfactory results were obtained with respect to the tracking of the speed trajectory and disturbance rejection.

Suggested Citation

  • Errouissi, Rachid & Ouhrouche, Mohand, 2010. "Nonlinear predictive controller for a permanent magnet synchronous motor drive," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(2), pages 394-406.
  • Handle: RePEc:eee:matcom:v:81:y:2010:i:2:p:394-406
    DOI: 10.1016/j.matcom.2010.08.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475410002855
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2010.08.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arahal, M.R. & Barrero, F. & Ortega, M.G. & Martin, C., 2016. "Harmonic analysis of direct digital control of voltage inverters," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 130(C), pages 155-166.
    2. Fabiano C. Rosa & Edson Bim, 2020. "A Constrained Non-Linear Model Predictive Controller for the Rotor Flux-Oriented Control of an Induction Motor Drive," Energies, MDPI, vol. 13(15), pages 1-18, July.
    3. Kim, Seong-S. & Choi, Han Ho, 2014. "Adaptive synchronization method for chaotic permanent magnet synchronous motor," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 101(C), pages 31-42.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:81:y:2010:i:2:p:394-406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.