IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v80y2010i11p2134-2141.html
   My bibliography  Save this article

From transport to diffusion through a space asymptotic approach

Author

Listed:
  • Dulla, S.
  • Canepa, S.
  • Ravetto, P.

Abstract

The spatially asymptotic theory is a useful approach to the neutron transport model for nuclear reactor physics applications. For steady-state problems the transport equation is taken in an infinite medium and it is treated by the Fourier transform. A formal solution is thus obtained for any assumption on the order of anisotropy, leading to the BN formulation. In the case of isotropic emissions the Green function of the problem can be given an explicit expression by the inverse Fourier transformation, leading to the solution that can also be obtained by Case method.

Suggested Citation

  • Dulla, S. & Canepa, S. & Ravetto, P., 2010. "From transport to diffusion through a space asymptotic approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(11), pages 2134-2141.
  • Handle: RePEc:eee:matcom:v:80:y:2010:i:11:p:2134-2141
    DOI: 10.1016/j.matcom.2010.04.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475410001126
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2010.04.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:80:y:2010:i:11:p:2134-2141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.