IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v79y2009i6p1935-1947.html
   My bibliography  Save this article

Fast computation of equispaced Pareto manifolds and Pareto fronts for multiobjective optimization problems

Author

Listed:
  • Pereyra, Victor

Abstract

In this paper, we consider the problem of generating a well sampled discrete representation of the Pareto manifold or the Pareto front corresponding to the equilibrium points of a multi-objective optimization problem. We show how the introduction of simple additional constraints into a continuation procedure produces equispaced points in either of those two sets. Moreover, we describe in detail a novel algorithm for global continuation that requires two orders of magnitude less function evaluations than evolutionary algorithms commonly used to solve this problem. The performance of the methods is demonstrated on problems from the current literature.

Suggested Citation

  • Pereyra, Victor, 2009. "Fast computation of equispaced Pareto manifolds and Pareto fronts for multiobjective optimization problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(6), pages 1935-1947.
  • Handle: RePEc:eee:matcom:v:79:y:2009:i:6:p:1935-1947
    DOI: 10.1016/j.matcom.2007.02.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475407001474
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2007.02.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pereyra, V. & Scherer, G. & Wong, F., 2006. "Variable projections neural network training," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 73(1), pages 231-243.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benjamin Martin & Alexandre Goldsztejn & Laurent Granvilliers & Christophe Jermann, 2016. "On continuation methods for non-linear bi-objective optimization: towards a certified interval-based approach," Journal of Global Optimization, Springer, vol. 64(1), pages 3-16, January.
    2. Alonso, J.J. & LeGresley, P. & Pereyra, V., 2009. "Aircraft design optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(6), pages 1948-1958.
    3. Clempner, Julio B. & Poznyak, Alexander S., 2016. "Solving the Pareto front for multiobjective Markov chains using the minimum Euclidean distance gradient-based optimization method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 119(C), pages 142-160.
    4. Johan M. Bogoya & Andrés Vargas & Oliver Schütze, 2019. "The Averaged Hausdorff Distances in Multi-Objective Optimization: A Review," Mathematics, MDPI, vol. 7(10), pages 1-35, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alonso, J.J. & LeGresley, P. & Pereyra, V., 2009. "Aircraft design optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(6), pages 1948-1958.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:79:y:2009:i:6:p:1935-1947. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.