IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v79y2009i11p3296-3313.html
   My bibliography  Save this article

Wiener and Hammerstein uncertain models identification

Author

Listed:
  • Biagiola, S.I.
  • Figueroa, J.L.

Abstract

Block-oriented models have proved to be useful as simple nonlinear models for a vast number of applications. They are described as a cascade of linear dynamic and nonlinear static blocks. They have emerged as an appealing proposal due to their simplicity and the property of being valid over a larger operating region than a LTI model. In the description of these models, several approaches can be found in the literature to perform the identification process. In this sense, an important improvement is to achieve robust identification of block-oriented models to cope with the presence of uncertainty.

Suggested Citation

  • Biagiola, S.I. & Figueroa, J.L., 2009. "Wiener and Hammerstein uncertain models identification," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(11), pages 3296-3313.
  • Handle: RePEc:eee:matcom:v:79:y:2009:i:11:p:3296-3313
    DOI: 10.1016/j.matcom.2009.05.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475409001281
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2009.05.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han, Lili & Wu, Fangxiang & Sheng, Jie & Ding, Feng, 2012. "Two recursive least squares parameter estimation algorithms for multirate multiple-input systems by using the auxiliary model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(5), pages 777-789.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:79:y:2009:i:11:p:3296-3313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.