IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v79y2008i4p1153-1164.html
   My bibliography  Save this article

Model-order reductions for MIMO systems using global Krylov subspace methods

Author

Listed:
  • Chu, Chia-Chi
  • Lai, Ming-Hong
  • Feng, Wu-Shiung

Abstract

This paper presents theoretical foundations of global Krylov subspace methods for model order reductions. This method is an extension of the standard Krylov subspace method for multiple-inputs multiple-outputs (MIMO) systems. By employing the congruence transformation with global Krylov subspaces, both one-sided Arnoldi and two-sided Lanczos oblique projection methods are explored for both single expansion point and multiple expansion points. In order to further reduce the computational complexity for multiple expansion points, adaptive-order multiple points moment matching algorithms, or the so-called rational Krylov space method, are also studied. Two algorithms, including the adaptive-order rational global Arnoldi (AORGA) algorithm and the adaptive-order global Lanczos (AOGL) algorithm, are developed in detail. Simulations of practical dynamical systems will be conducted to illustrate the feasibility and the efficiency of proposed methods.

Suggested Citation

  • Chu, Chia-Chi & Lai, Ming-Hong & Feng, Wu-Shiung, 2008. "Model-order reductions for MIMO systems using global Krylov subspace methods," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(4), pages 1153-1164.
  • Handle: RePEc:eee:matcom:v:79:y:2008:i:4:p:1153-1164
    DOI: 10.1016/j.matcom.2007.09.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475407002546
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2007.09.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yanpeng & Jiang, Yaolin & Yang, Ping, 2021. "Time domain model order reduction of discrete-time bilinear systems with Charlier polynomials," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 905-920.
    2. Wang, Zhao-Hong & Jiang, Yao-Lin & Xu, Kang-Li, 2023. "Reduced-order state-space models for two-dimensional discrete systems via bivariate discrete orthogonal polynomials," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 441-456.
    3. Bonin, Thomas & Faßbender, Heike & Soppa, Andreas & Zaeh, Michael, 2016. "A fully adaptive rational global Arnoldi method for the model-order reduction of second-order MIMO systems with proportional damping," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 122(C), pages 1-19.
    4. Rydel, Marek & Stanisławski, Włodzimierz, 2017. "Selection of reduction parameters for complex plant MIMO LTI models using the evolutionary algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 140(C), pages 94-106.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:79:y:2008:i:4:p:1153-1164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.