IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v73y2006i1p21-27.html
   My bibliography  Save this article

Shape control of 3D lemniscates

Author

Listed:
  • Arcos, Gabriel
  • Montilla, Guillermo
  • Ortega, José
  • Paluszny, Marco

Abstract

A 3D lemniscate is the set of points whose product of squared distances to a given finite family of fixed points is constant. 3D lemniscates are the space analogs of the classical lemniscates in the plane. They are bounded algebraic surfaces whose degree is twice the number of foci. Within the field of computer aided geometric design (CAGD), 3D lemniscates have been considered in [J.R. Ortega, M. Paluszny, Lemniscatas 3D, Revista de Matemática: Teoría y Aplicaciones 9 (2) (2002) 7–14] only for the case of three foci. This case is simpler than the general case, because most of the parameters that control connectedness and deformation can be computed analytically. We introduce the singularities as shape handles for the control of lemniscate deformation and pay special attention to the case of four foci.

Suggested Citation

  • Arcos, Gabriel & Montilla, Guillermo & Ortega, José & Paluszny, Marco, 2006. "Shape control of 3D lemniscates," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 73(1), pages 21-27.
  • Handle: RePEc:eee:matcom:v:73:y:2006:i:1:p:21-27
    DOI: 10.1016/j.matcom.2006.06.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475406001625
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2006.06.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:73:y:2006:i:1:p:21-27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.