IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v72y2006i2p201-205.html
   My bibliography  Save this article

A fractional step lattice Boltzmann method for simulating high Reynolds number flows

Author

Listed:
  • Shu, C.
  • Niu, X.D.
  • Chew, Y.T.
  • Cai, Q.D.

Abstract

A fractional step lattice Boltzmann scheme is presented to greatly improve the stability of the lattice Boltzmann method (LBM) in modelling incompressible flows at high Reynolds number. This method combines the good features of the conventional LBM and the fractional step technique. Through the fractional step, the flow at an extreme case of infinite Reynolds number (inviscid flow) can be effectively simulated. In addition, the non-slip boundary condition can be directly implemented.

Suggested Citation

  • Shu, C. & Niu, X.D. & Chew, Y.T. & Cai, Q.D., 2006. "A fractional step lattice Boltzmann method for simulating high Reynolds number flows," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 72(2), pages 201-205.
  • Handle: RePEc:eee:matcom:v:72:y:2006:i:2:p:201-205
    DOI: 10.1016/j.matcom.2006.05.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475406001480
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2006.05.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krivovichev, Gerasim V., 2018. "Linear Bhatnagar–Gross–Krook equations for simulation of linear diffusion equation by lattice Boltzmann method," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 102-119.
    2. Krivovichev, Gerasim V., 2019. "Stability analysis of body force action models used in the single-relaxation-time single-phase lattice Boltzmann method," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 25-41.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:72:y:2006:i:2:p:201-205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.