IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v61y2003i3p465-475.html
   My bibliography  Save this article

Nonstandard finite difference method by nonlocal approximation

Author

Listed:
  • Anguelov, Roumen
  • Lubuma, Jean M.-S.

Abstract

Two types of monotonic properties of solutions of differential equations are discussed and general finite difference schemes, which are stable with respect to these properties are investigated. Apart from being elementary stable, these schemes are also shown to preserve qualitative properties of nonhyperbolic fixed points of the differential equations. From the practical point of view, a systematic procedure based on nonlocal approximation, is proposed for the construction of qualitatively stable nonstandard finite difference schemes for the logistic equation, the combustion model and the reaction-diffusion equation.

Suggested Citation

  • Anguelov, Roumen & Lubuma, Jean M.-S., 2003. "Nonstandard finite difference method by nonlocal approximation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 61(3), pages 465-475.
  • Handle: RePEc:eee:matcom:v:61:y:2003:i:3:p:465-475
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475402001064
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. Sunday & Y. Skwame & T. Y. Kyagya, 2017. "Simulation of Riccati Differential Equations by Nonlocal Approximation of Nonlinear Terms and Reconstruction of Denominator Functions," Academic Journal of Applied Mathematical Sciences, Academic Research Publishing Group, vol. 3(7), pages 62-68, 07-2017.
    2. Pius W. M. Chin & Claude R. B. Moutsinga & Khadijo R. Adem, 2024. "An Analysis of the Nonstandard Finite Difference and Galerkin Methods Applied to the Huxley Equation," Mathematics, MDPI, vol. 12(6), pages 1-18, March.
    3. Rihan, F.A. & Velmurugan, G., 2020. "Dynamics of fractional-order delay differential model for tumor-immune system," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    4. Nasser Hassan Sweilam & Seham Mahyoub Al-Mekhlafi & Taghreed Abdul Rahman Assiri, 2017. "Numerical Study for Time Delay Multistrain Tuberculosis Model of Fractional Order," Complexity, Hindawi, vol. 2017, pages 1-14, July.
    5. Jódar, Lucas & Villanueva, Rafael J. & Arenas, Abraham J. & González, Gilberto C., 2008. "Nonstandard numerical methods for a mathematical model for influenza disease," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 622-633.
    6. Tuan Hoang, Manh & Nagy, A.M., 2019. "Uniform asymptotic stability of a Logistic model with feedback control of fractional order and nonstandard finite difference schemes," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 24-34.
    7. Vasily E. Tarasov, 2024. "Exact Finite-Difference Calculus: Beyond Set of Entire Functions," Mathematics, MDPI, vol. 12(7), pages 1-37, March.
    8. Zhang, Hong & Georgescu, Paul & Hassan, Adamu Shitu, 2016. "Mathematical insights and integrated strategies for the control of Aedes aegypti mosquito," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 1059-1089.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:61:y:2003:i:3:p:465-475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.