IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v58y2002i3p255-272.html
   My bibliography  Save this article

On the Nipp polyhedron algorithm for solving singular perturbation problems

Author

Listed:
  • Khanin, R.

Abstract

This paper deals with a constructive approach for finding local approximations to singular perturbation problems. This approach is based on Nipp polyhedron algorithm wherein a correspondence between a singularly perturbed system and a convex polyhedron is established. The task of finding local approximations reduces to the linear programming problem of finding vertices of polyhedron adjacent to the zero vertex. The paper presents Nipp polyhedron algorithm and considers its computer implementation in Maple. Two non-trivial examples are given.

Suggested Citation

  • Khanin, R., 2002. "On the Nipp polyhedron algorithm for solving singular perturbation problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 58(3), pages 255-272.
  • Handle: RePEc:eee:matcom:v:58:y:2002:i:3:p:255-272
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475401003548
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bruno, A.D., 1998. "Newton polyhedra and power transformations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 45(5), pages 429-443.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:58:y:2002:i:3:p:255-272. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.