IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v57y2001i3p317-324.html
   My bibliography  Save this article

Automata network dynamical systems for construction of fractal objects

Author

Listed:
  • Severyanov, Vasily M.

Abstract

Fractal geometry plays an important role in the contemporary science. In some sense, objects with integer dimension are partial cases of the more general realm of entities having a ragged shape and fractional dimension. Fractals of a broad class are described by deterministic iterated function systems (IFSs). Simultaneously, the iterated function systems give a base for ‘automata networks’ capable to realize their latent dynamics. When such a dynamics become alive (with the help of an appropriate automata network), it finishes in a steady state which is (in the general case) a fractal set. In this report, an algorithm is described for building an automata network for a given iterated function system. It is worth noting that the ‘automata networks’ can be considered generalizations of cellular automata, the main difference is that our automata networks have non-regular structure of the system of the cell neighborhoods. An evolving algebra approach for description of the automata network dynamical systems is also mentioned.

Suggested Citation

  • Severyanov, Vasily M., 2001. "Automata network dynamical systems for construction of fractal objects," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 57(3), pages 317-324.
  • Handle: RePEc:eee:matcom:v:57:y:2001:i:3:p:317-324
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475401003469
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:57:y:2001:i:3:p:317-324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.