IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v56y2001i6p547-562.html
   My bibliography  Save this article

Numerical simulation of coupled nonlinear Schrödinger equation

Author

Listed:
  • Ismail, M.S.
  • Taha, Thiab R.

Abstract

The coupled nonlinear Schrödinger equation models several interesting physical phenomena. It represents a model equation for optical fiber with linear birefringence. In this paper we introduce a finite difference method for a numerical simulation of this equation. This method is second-order in space and conserves the energy exactly. It is quite accurate and describes the interaction picture clearly according to our numerical results.

Suggested Citation

  • Ismail, M.S. & Taha, Thiab R., 2001. "Numerical simulation of coupled nonlinear Schrödinger equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 56(6), pages 547-562.
  • Handle: RePEc:eee:matcom:v:56:y:2001:i:6:p:547-562
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037847540100324X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ismail, M.S., 2008. "Numerical solution of coupled nonlinear Schrödinger equation by Galerkin method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(4), pages 532-547.
    2. Zhou, Shenggao & Cheng, Xiaoliang, 2010. "Numerical solution to coupled nonlinear Schrödinger equations on unbounded domains," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(12), pages 2362-2373.
    3. Todorov, M.D. & Christov, C.I., 2009. "Impact of the large cross-modulation parameter on the collision dynamics of quasi-particles governed by vector NLSE," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(1), pages 46-55.
    4. Sonnier, W.J. & Christov, C.I., 2005. "Strong coupling of Schrödinger equations: Conservative scheme approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 69(5), pages 514-525.
    5. Ilati, Mohammad & Dehghan, Mehdi, 2019. "DMLPG method for numerical simulation of soliton collisions in multi-dimensional coupled damped nonlinear Schrödinger system which arises from Bose–Einstein condensates," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 244-253.
    6. Tsang, S.C. & Chow, K.W., 2004. "The evolution of periodic waves of the coupled nonlinear Schrödinger equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 66(6), pages 551-564.
    7. Wang, Tingchun & Nie, Tao & Zhang, Luming & Chen, Fangqi, 2008. "Numerical simulation of a nonlinearly coupled Schrödinger system: A linearly uncoupled finite difference scheme," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 607-621.
    8. Lin, Bin, 2019. "Parametric spline schemes for the coupled nonlinear Schrödinger equation," Applied Mathematics and Computation, Elsevier, vol. 360(C), pages 58-69.
    9. Ismail, M.S. & Taha, Thiab R., 2007. "A linearly implicit conservative scheme for the coupled nonlinear Schrödinger equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 74(4), pages 302-311.
    10. Taghread Ghannam Alharbi & Abdulghani Alharbi, 2023. "A Study of Traveling Wave Structures and Numerical Investigations into the Coupled Nonlinear Schrödinger Equation Using Advanced Mathematical Techniques," Mathematics, MDPI, vol. 11(22), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:56:y:2001:i:6:p:547-562. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.