IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v54y2000i1p145-157.html
   My bibliography  Save this article

Concerning the primary and secondary objectives in robot task definition — the “learn from humans” principle

Author

Listed:
  • Potkonjak, Veljko
  • Tzafestas, Spyros
  • Kostic, Dragan

Abstract

This paper is concerned with the trajectory definition in robot tasks. Although very often ignored, the specification of robot motion is not the first step in the definition of a robot task. The task definition starts with the description of the final outcome, i.e. with the specification of the job to be performed. When this is done, the proper robot kinematics (motion law) is defined. This step, from the outcome of the task to the robot motion, is sometimes straightforward and dictated by the technology applied. However, even if a multiple choice of motion is possible leading to the same outcome, this possibility is usually avoided by preassuming a certain optimality criterion for the quality of work. Clearly, such an approach does not leave the possibility for some additional optimization in the sense of a secondary objective. So, some potential benefits are lost. This paper starts from the observation that successful operation of a robot does not necessarily imply the maximum quality of its outcome. It is sufficient if the quality is kept at a given (lower) level. Such a suboptimal task execution offers the possibility of some additional secondary optimization. The kinematics of the task is modified according to a secondary objective function. The quality is then treated as a constraint in the minimization of this secondary objective function. This optimization can be based on biomechanical principles. Here the principle: “learn from humans” is adopted, i.e. the kinematics modification is done so as to resemble the behavior of a human worker. The benefits of the approach of the paper are illustrated by two specific examples, namely the handwriting and spray-coating tasks.

Suggested Citation

  • Potkonjak, Veljko & Tzafestas, Spyros & Kostic, Dragan, 2000. "Concerning the primary and secondary objectives in robot task definition — the “learn from humans” principle," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 54(1), pages 145-157.
  • Handle: RePEc:eee:matcom:v:54:y:2000:i:1:p:145-157
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475400002251
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:54:y:2000:i:1:p:145-157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.